Skip to main content
Log in

Tunable photonic crystal wavelength sampler with response in terahertz frequency range

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Optical features of novel one dimensional photonic crystals with response in the terahertz frequency range are studied theoretically by outlining the transfer matrix method. Dependence of the ideal crystal reflectance to the size of the alternating SiO2 and InSb layers are studied systematically at the first step. Extracting the optimum values in which large photonic band gaps (PBGs) appear in the reflectance spectrum, two more defective structures are proposed by benefiting the electro-optical behaviors of Li:NbO3 crystal. Taking into account of the reflection alterations, tunability of the crystals’ response by the wave incident angle, external bias voltage applied to the defect layer(s) and the wave polarization is further studied. Results show that PBGs and resonant modes inside them are strongly dependent to all these controlling factors besides the dependence to the structural parameters. But however, to some extent different modes have different behaviors. The proposed crystals may satisfy the growing demands for development of the high speed photonic devices in the terahertz frequency range and have great potentials for applications such as tunable wavelength samplers/filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdulhalim, I.: Reflective phase-only modulation using one dimensional photonic crystals. J. Opt. A 2, L9–L11 (2000a)

    Article  ADS  Google Scholar 

  • Abdulhalim, I.: Analytic propagation matrix method for anisotropic magneto-optic layered media. J. Opt. A Pure Appl. Opt. 2, 557–564 (2000b)

    Article  ADS  Google Scholar 

  • Abedin, K.S., Ito, H.: Temperature-dependent dispersion relation of ferroelectric lithium tantalite. J. Appl. Phys. 80, 6561–6563 (1996)

    Article  ADS  Google Scholar 

  • Bakunov, M.I., Tsarev, M.V., Mashkovich, E.A.: Terahertz difference-frequency generation by tilted amplitude front excitation. Opt. Express 20, 28573–28585 (2012)

    Article  ADS  Google Scholar 

  • Barker, A.S., Loudon, R.: Direct properties and optical phonons in LiNbO3. Phys. Rev. 158, 433–445 (1967)

    Article  ADS  Google Scholar 

  • Bian, L.A., Liu, P., Li, G., Chen, Y., Liu, H., Liu, C.: Multi-mode absorption in multi-cavity photonic crystal with two graphene monolayers. Superlattices Microstruct. 112, 303–310 (2017)

    Article  ADS  Google Scholar 

  • Brosi, J.M., Koos, C., Andreani, L.C., Waldow, M., Leuthold, J., Freude, W.: High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt. Express 16, 4177–4191 (2008)

    Article  ADS  Google Scholar 

  • Chang, Y.H., Liu, C.C., Wu, C.J.: Use of photonic quantum well as tunable defect in multilayer narrowband reflection-and-transmission filter. Opt. Rev. 17, 495–498 (2010)

    Article  Google Scholar 

  • El-Amassi, D.M., Taya, S.A., Ramanujam, N.R., Vigneswaran, D., Udaiyakumar, R.: Extension of energy band gap in ternary photonic crystal using left-handed materials. Superlattices Microstruct. 120, 353–362 (2018)

    Article  ADS  Google Scholar 

  • Fu, J., Chen, W., Lv, B.: Tunable defect mode realized by graphene-based photonic crystal. Phys. Lett. A 380, 1793–1798 (2016)

    Article  ADS  Google Scholar 

  • Ghasemi, F., Razi, S., Madanipour, K.: Single-step laser-assisted graphene oxide reduction and nonlinear optical properties exploration via CW laser excitation. J. Electron. Mater. 47, 2871–2879 (2018)

    Article  Google Scholar 

  • Guo, B., Qiu, X.M.: Differential transfer matrix method for photonic band structure of one dimensional non-uniform distribution plasma photonic crystal. Optik 123, 1390–1392 (2012)

    Article  Google Scholar 

  • Hebling, J., Stepanov, A.G., Almasi, G., Bartal, B., Kuhl, J.: Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts. Appl. Phys. B 78, 593–599 (2004)

    Article  ADS  Google Scholar 

  • Hung, H.C., Wu, C.J., Chang, S.J.: Terahertz temperature-dependent defect mode in a semiconductor-dielectric photonic crystal. J. Appl. Phys. 110, 093110 (2011)

    Article  ADS  Google Scholar 

  • John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  • Jundt, D.H.: Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate. Opt. Lett. 22, 1553–1555 (1997)

    Article  ADS  Google Scholar 

  • Kang, Y., Liu, H.: Wideband absorption in one dimensional photonic crystal with graphene-based hyperbolic metamaterials. Superlattices Microstruct. 114, 355–360 (2018)

    Article  ADS  Google Scholar 

  • Kasaei, L., Melbourne, T., Manichev, V., Feldman, L.C., Gustafsson, T., Chen, K., Xi, X.X., Davidson, B.A.: MgB2 Josephson junctions produced by focused helium ion beam irradiation. AIP Adv. 8, 075020 (2018)

    Article  ADS  Google Scholar 

  • Kiessling, J., Buse, K., Breunig, I.: Temperature-dependent Sellmeier equation for the extraordinary refractive index of 5 mol.% MgO-doped LiNbO3 in the terahertz range. J. Opt. Soc. Am. B 30, 950–952 (2013)

    Article  ADS  Google Scholar 

  • Kim, Y.S., Lin, S.Y., Wu, H.Y., Pan, R.P.: A tunable terahertz filter and its switching properties in terahertz region based on a defect mode of a metallic photonic crystal. J. Appl. Phys. 109, 123111 (2011)

    Article  ADS  Google Scholar 

  • Kuzminov, Y.S.: Lithium Niobate Crystals. Cambridge International Science, Cambridge (1999)

    Google Scholar 

  • Lee, K.S., Ko, D.K., Yu, N.E.: Temperature-dependent Sellmeier equation at terahertz frequency range for 1 mol% MgO-doped stoichiometric lithium tantalite. Jpn. J. Appl. Phys. 56, 040303 (2017)

    Article  ADS  Google Scholar 

  • Li, Z.Y.: Principles of the plane-wave transfer-matrix method for photonic crystals. Sci. Technol. Adv. Mater. 6, 837 (2005)

    Article  Google Scholar 

  • Lou, J., Cheng, T., Li, S.: Surface plasmon induced dual-wavelength photonic crystal fiber polarizing filter based on coupling between core mode and SPP mode. Opt. Commun. 426, 267–272 (2018)

    Article  ADS  Google Scholar 

  • Lusk, D., Abdulhalim, I., Placido, F.: Omnidirectional reflection from fibonacci quasi-periodic one-dimensional photonic crystal. Opt. Commun. 198, 273–279 (2001)

    Article  ADS  Google Scholar 

  • Mehdian, H., Mohammadzahery, Z., Hasanbeigi, A.: Magneto-optical properties of one-dimensional conjugated photonic crystal heterojunctions containing plasma layers. Appl. Opt. 54, 7949–7956 (2015)

    Article  ADS  Google Scholar 

  • Němec, H., Duvillaret, L., Garet, F.: Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect. J. Appl. Phys. 96, 4072–4075 (2004)

    Article  ADS  Google Scholar 

  • Pálfalvi, L., Hebling, J., Kuhl, J., Péter, Á., Polgár, K.: Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range. J. Appl. Phys. 97, 123505 (2005)

    Article  ADS  Google Scholar 

  • Ping Liu, C., Jung Fan, T.: Improving detection performance of broadband QDIP indual-bands of 3–5 and 8–12 μm with photonic crystal filters. Opt. Laser Technol. 62, 82–88 (2014)

    Article  ADS  Google Scholar 

  • Qi, L., Shang, L., Zhang, S.: One-dimensional plasma photonic crystals with sinusoidal densities. Phys. Plasmas 21, 013501 (2014)

    Article  ADS  Google Scholar 

  • Razi, S., Ghasemi, F.: Laser-assisted generation of periodic structures on a steel surface: a method for increasing microhardness. Eur. Phys. J. Plus 133, 49 (2018)

    Article  Google Scholar 

  • Razi, S., Ghasemi, F.: Broad band temperature independent photonic crystal based optical filter with response in visible wavelength range. Laser Phys. 29, 046204 (2019)

    Article  Google Scholar 

  • Razi, S., Varlamova, O., Reif, J., Bestehorn, M., Ratzke, M.: Birth of periodic micro/nano structures on 316L stainless steel surface following femtosecond laser irradiation; single and multi-scanning study. Opt. Laser Technol. 104, 8–16 (2018)

    Article  ADS  Google Scholar 

  • Sanna, S., Gero Schmidt, W.: Lithium niobate X-cut, Y-cut, and Z-cut surfaces from ab initio theory. Phys. Rev. B 81, 214116 (2010)

    Article  ADS  Google Scholar 

  • Schwarz, U.T., Maier, M.: Frequency dependence of phonon-polariton damping in lithium niobate. Phys. Rev. B Condens. Matter 53, 5074–5077 (1996)

    Article  ADS  Google Scholar 

  • Shanmuga Sundar, D., Sathyadevaki, R., Sridarshini, T., Sivanantha Raja, A.: Photonic crystal based routers for photonic integrated on chip networks: a brief analysis. Opt. Quantum Electron. 50, 383 (2018)

    Article  Google Scholar 

  • Si, J., Sun, C.: On the optical performance of composite structures of graphene and photonic crystals at infrared wavelengths. J. Appl. Phys. 122, 133104 (2017)

    Article  ADS  Google Scholar 

  • Sowade, R., Breunig, I., Tulea, C., Buse, K.: Nonlinear coefficient and temperature dependence of the refractive index of lithium niobate crystals in the terahertz regime. Appl. Phys. B 99, 63–66 (2010)

    Article  ADS  Google Scholar 

  • Stodolk, J., Nau, D., Frommberger, M., Zanke, C., Giessen, H., Quandt, E.: Fabrication of two-dimensional hybrid photonic crystals utilizing electron beam lithography. Microelectron. Eng. 78–79, 442–447 (2005)

    Article  Google Scholar 

  • Stoyanov, N.S., Feurer, T., Ward, D.W., Statz, E.R., Nelson, K.A.: Direct visualization of a polariton resonator in the THz regime. Opt. Express 12, 2387–2396 (2004)

    Article  ADS  Google Scholar 

  • Unferdorben, M., Szaller, Z., Hajdara, I., Hebling, J., Pálfalvi, L.: Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range. J. Infrared Milli Terahz Waves 5, 5–8 (2015). https://doi.org/10.1007/s10762-015-0165-5

    Article  Google Scholar 

  • Vasiliev, M., Alekseevich Kotov, V., Alameh, K.E., Belotelov, V.I.: Novel magnetic photonic crystal structures for magnetic field sensors and visualizers. IEEE Trans. Magn. 44, 323–328 (2008)

    Article  ADS  Google Scholar 

  • Wijnhoven, J.E.G.J., Bechger, L., Vos, W.L.: Fabrication and characterization of large macroporous photonic crystals in titania. Chem. Mater. 13, 4486–4499 (2001)

    Article  Google Scholar 

  • Wu, X., Zhou, C., Ronny Huang, W., Ahr, F., Kärtner, F.X.: Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range. Opt. Express 23, 29729–29737 (2015)

    Article  ADS  Google Scholar 

  • Wülbern, J.H., Petrov, A., Eich, M.: Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator. Opt. Express 17, 304–313 (2009)

    Article  ADS  Google Scholar 

  • Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  • Yi-Min, S., Zong-Liang, M., Bi-Hui, H., Guo-Qing, L., Li, W.: Giant birefringence of lithium niobate crystals in the terahertz region. Chin. Phys. Lett. 24, 414 (2007)

    Article  ADS  Google Scholar 

  • Yu, N.E., Lee, K.S., Ko, D.-K., Kang, C., Takekawa, S., Kitamura, K.: Temperature dependent narrow-band terahertz pulse generation in periodically poled crystals via difference frequency generation. Opt. Commun. 284, 1395–1400 (2011)

    Article  ADS  Google Scholar 

  • Zelmon, D.E., Small, D.L., Jundt, D.: Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide–doped lithium niobate. J. Opt. Soc. Am. B 14, 3319–3322 (1997)

    Article  ADS  Google Scholar 

  • Zhuang, H., Kong, F., Li, K., Sheng, Sh.: Tunable plasmonic Bragg reflector with different graphene nanoribbon width. Jpn. J. Appl. Phys. 54, 095101 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepehr Razi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razi, S., Ghasemi, F. Tunable photonic crystal wavelength sampler with response in terahertz frequency range. Opt Quant Electron 51, 104 (2019). https://doi.org/10.1007/s11082-019-1821-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1821-0

Keywords

Navigation