Skip to main content
Log in

Efficiency improvement of graphene/silicon Schottky junction solar cell using diffraction gratings

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This study investigated the performance of graphene/silicon Schottky junction solar cells and presented two structures based on graphene diffraction gratings to significantly enhance the efficiency of the cells. Rectangular and staircase graphene gratings were employed as the junction pairs for silicon. The main structure and the proposed structures were then investigated at different temperatures, silicon thicknesses, and doping levels. The results showed that graphene grating significantly increased the internal electric field and width of the depletion region compared to the main structure. Moreover, the graphene-silicon interface area was increased at the contact point, consequently decreasing the dangling bonds. These regions also act as anti-reflectors and reduce the reflection of sunlight. The efficiency of the proposed structures, thanks to the aforementioned features, has been reported to be three-fold greater than the main structure. For instance, at the temperature of 300 K, doping level of 1 × 1017 cm−3 and silicon thickness of 500 nm, the short-circuit current, open-circuit voltage, fill factor, and efficiency of the main structure were obtained as 20.3 mA/cm2, 0.154 V, 57.3%, and 1.8%, respectively. For the same conditions, these figures were obtained as 22.4 mA/cm2, 0.398 V, 73%, and 6.54% for the rectangular graphene grating, and 20.8 mA/cm2, 0.397 V, 73%, and 6.08% for the staircase graphene grating, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Altuntepe, A., Seyhan, A., Zan, R.: Graphene for Si-based solar cells. J. Mol. Struct. 1200, 127055–127060 (2020)

    Article  Google Scholar 

  • Apicella, V., Fasasi, T.A., Wang, S., Lei, S., Ruotolo, A.: A multilayer-graphene/silicon infrared Schottky photo-diode. Adv. Electron. Mater. 5, 1900594–1900600 (2019)

    Article  Google Scholar 

  • Bavir, M., Fattah, A.: An investigation and simulation of the graphene performance in dye-sensitized solar cell. Opt. Quantum Electron. 48, 559–576 (2016)

    Article  Google Scholar 

  • Bhopal, M.F., Lee, D.W., Lee, S.H., Lee, A.R., Kim, H.J., Lee, S.H.: Selective nickel/silver front metallization for graphene/silicon solar cells. Mater. Lett. 234, 237–240 (2019)

    Article  Google Scholar 

  • Chandramohan, S., Janardhanam, V., Seo, T.H., Hong, C.-H., Suh, E.-K.: Improved photovoltaic effect in graphene/silicon solar cell using MoO3/Ag/MoO3 multilayer coating. Mater. Lett. 246, 103–106 (2019)

    Article  Google Scholar 

  • Chen, H., Jiao, S., Wang, M., Heidari, A.A., Zhao, X.: Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts. J. Clean. Prod. 244, 118778 (2020)

    Article  Google Scholar 

  • Green, M.A., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., Ho-Baillie, A.W.: Solar cell efficiency tables (version 54). Prog. Photovolt. Res. Appl. 27, 565–575 (2019)

    Article  Google Scholar 

  • Kokab, T., Siddique, Z., Hussain, S., Iqbal, A.: Doped quaternary metal chalcogenides Cu2ZnSnS4 nanocrystals as efficient light harvesters for solar cell devices. J. Mater. Sci.: Mater. Electron. 30, 20860–20869 (2019)

    Google Scholar 

  • Kuang, Y., Liu, Y., Ma, Y., Hong, X., Yang, X., Feng, J.: Theoretical study on graphene silicon heterojunction solar cell. J. Nanoelectron. Optoelectron. 10, 611–615 (2015)

    Article  Google Scholar 

  • Kuang, Y., Zhang, D., Ma, Y., Liu, Y., Shao, Z., Hong, X., Yang, X., Feng, J.: Effect of near surface inverse doping on graphene silicon heterojunction solar cell. Opt. Quantum Electron. 48, 199–207 (2016)

    Article  Google Scholar 

  • Kuang, Y., Ma, Y., Xu, J., Liu, Y., Zhang, D., Hong, X., Yang, X., Feng, J.: Improvement of minority carrier collection and quantum efficiency in graphene planar silicon solar cell. Opt. Quantum Electron. 49, 144–152 (2017)

    Article  Google Scholar 

  • Kuru, C., Yavuz, S., Kargar, A., Choi, D., Choi, C., Rustomji, C., Jin, S., Bandaru, P.R.: Enhanced power conversion efficiency of graphene/silicon heterojunction solar cells through NiO induced doping. J. Nanosci. Nanotechnol. 16, 1190–1193 (2016)

    Article  Google Scholar 

  • Luongo, G., Grillo, A., Giubileo, F., Iemmo, L., Lukosius, M., Chavarin, C.A., Wenger, C., Bartolomeo, A.D.: Graphene Schottky junction on pillar patterned silicon substrate. Nanomaterials 9, 659–668 (2019)

    Article  Google Scholar 

  • Mahmoudi, T., Wang, Y., Hahn, Y.-B.: Graphene and its derivatives for solar cells application. Nano Energy 47, 51–65 (2018)

    Article  Google Scholar 

  • Naderi, A.: Double gate graphene nanoribbon field effect transistor with single halo pocket in channel region. Superlattices Microstruct. 89, 170–178 (2016)

    Article  ADS  Google Scholar 

  • Naderi, A., Keshavarzi, P.: Electrically-activated source extension graphene nanoribbon field effect transistor: novel attributes and design considerations for suppressing short channel effects. Superlattices Microstruct. 72, 305–318 (2014)

    Article  ADS  Google Scholar 

  • Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., Sugimoto, H.: Cd-free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%. IEEE J. Photovolt. 9, 1863–1867 (2019)

    Article  Google Scholar 

  • Ouyang, J.: Applications of carbon nanotubes and graphene for third-generation solar cells and fuel cells. Nano Mater. Sci. 1, 77–90 (2019)

    Article  Google Scholar 

  • Parida, B., Yoon, S., Jeong, S.M., Cho, J.S., Kim, J.-K., Kang, D.-W.: Recent progress on cesium lead/tin halide-based inorganic perovskites for stable and efficient solar cells: a review. Sol. Energy Mater. Sol. Cells 204, 110212–110240 (2020)

    Article  Google Scholar 

  • Patel, K., Tyagi, P.K.: Multilayer graphene as a transparent conducting electrode in silicon heterojunction solar cells. AIP Adv. 5, 077165–077176 (2015)

    Article  ADS  Google Scholar 

  • Shi, W., Ma, X.: Photovoltaic effect in graphene/MoS2/Si van der Waals heterostructures. Coatings 8, 1–8 (2018)

    Google Scholar 

  • Sze, S., Ng, K.K.: Physics of Semiconductor Devices. Wiley, Hoboken (2006)

    Book  Google Scholar 

  • Tiong, V.T., Wang, H.: Photon-Responsive Nanomaterials for Solar Cells. Springer Series in Materials Science Responsive Nanomaterials for Sustainable Applications, pp. 1–63. Springer, Berlin (2020)

    Google Scholar 

  • Tsai, M.-L., Su, S.-H., Chang, J.-K., Tsai, D.-S., Chen, C.-H., Wu, C.-I., Li, L.-J., Chen, L.-J., He, J.-H.: Monolayer MoS2 heterojunction solar cells. ACS Nano 8, 8317–8322 (2014)

    Article  Google Scholar 

  • Wan, X., Xu, Y., Guo, H., Shehzad, K., Ali, A., Liu, Y., Yang, J., Dai, D., Lin, C.-T., Liu, L., Cheng, H.-C., Wang, F., Wang, X., Lu, H., Hu, W., Pi, X., Dan, Y., Luo, J., Hasan, T., Duan, X., Li, X., Xu, J., Yang, D., Ren, T., Yu, B.: A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon? npj 2D Mater. Appl. 1, 1–8 (2017)

    Article  Google Scholar 

  • Yan, N., Zhao, C., You, S., Zhang, Y., Li, W.: Recent progress of thin-film photovoltaics for indoor application. Chin. Chem. Lett. 31, 643–653 (2020)

    Article  Google Scholar 

  • Yin, Z., Zhu, J., He, Q., Cao, X., Tan, C., Chen, H., Yan, Q., Zhang, H.: Graphene-based materials for solar cell applications. Adv. Energy Mater. 4, 1300574–1300592 (2013)

    Article  Google Scholar 

  • Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Adachi, D., Kanematsu, M., Uzu, H., Yamamoto, K.: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032–17039 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Abbasi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattah, A., Bavir, M., Abbasi, A. et al. Efficiency improvement of graphene/silicon Schottky junction solar cell using diffraction gratings. Opt Quant Electron 52, 420 (2020). https://doi.org/10.1007/s11082-020-02533-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02533-z

Keywords

Navigation