Skip to main content
Log in

Effect of near surface inverse doping on graphene silicon heterojunction solar cell

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Two dimensional model of graphene silicon heterojunction solar cell with an inverse doped surface layer is structured using Silvaco TCAD tools by accurate control of ion implantation parameters such as ion beam energy and implantation dose. The I–V characteristics show that the performance of solar cell strongly depends on the inverse layer and doping concentrations. Due to the increase of effective barrier height, the collecting rate of minority carrier generated deep in silicon crystal is enhanced, which is shown by hole current density distribution at Y direction and evidenced by IQE analyses. The obtained maximum efficiency is 0.7332 % at implantation dose of 1e15 cm−2, which is improved significantly compared with normal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Behura, S.K., Mahala, P., Ray, A., Mukhopadhyay, I.: Theoretical simulation of photovoltaic response of graphene-on-semiconductors. Appl. Phys. A 111(4), 1159–1163 (2013)

    Article  ADS  Google Scholar 

  • Chand, S., Kaushal, P., Osvald, J.: Numerical simulation study of current–voltage characteristics of a Schottky diode with inverse doped surface layer. Mater. Sci. Semicond. Process. 16(2), 454–460 (2013)

    Article  Google Scholar 

  • Kordoš, P., Marso, M., Meyer, R., Lüth, H.: Schottky barrier height enhancement on n-In0. 53Ga0. 47As. J. Appl. Phys. 72(6), 2347–2355 (1992)

    Article  ADS  Google Scholar 

  • Kuang, Y., Liu, Y., Ma, Y., Xu, J., Yang, X., Hong, X.: Modeling and design of graphene GaAs junction solar cell. Adv. Condens. Matter Phys. 2015, 326384 (2015)

  • Kuang, Y., Liu, Y., Ma, Y., Hong, X., Yang, X.: Theoretical study on graphene silicon heterojunction solar cell. J. Nanoelectron. Optoelectron. 10(5), 611–615 (2015)

    Article  Google Scholar 

  • Li, X., Zhu, H., Wang, K., Cao, A., Wei, J., Wu, D.: Graphene-on-silicon Schottky junction solar cells. Adv. Mater. 22(25), 2743–2748 (2010)

    Article  Google Scholar 

  • Li, Y.F., Yang, W., Tu, Z.Q., Liu, Z.C., Yang, F., Zhang, L.Q.: Schottky junction solar cells based on graphene with different numbers of layers. Appl. Phys. Lett. 104(4), 043903 (2014)

    Article  ADS  Google Scholar 

  • Liu, S., Yuan, X., Wang, P., Chen, Z.G., Tang, L., Zhang, E., Chen, C.: Controllable growth of vertical heterostructure GaTe × Se1 – x/Si by molecular beam epitaxy. ACS Nano 9(8), 8592–8598 (2015a)

    Article  Google Scholar 

  • Liu, Z., Xu, J., Chen, D., Shen, G.: Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 44(1), 161–192 (2015b)

    Article  Google Scholar 

  • Lucky, Wu, G.J., et al.: The Semiconductor Device Physics, pp. 232–256. Xi’an Jiaotong University Press, Xi’an (2008)

    Google Scholar 

  • Miao, J., Hu, W., Guo, N., Lu, Z., Liu, X., Liao, L., Wang, L.: High responsivity Graphene/InAs nanowire heterojunction near infrared photodetectors with distinct photocurrent on/off ratios. Small 11(8), 936–942 (2015)

    Article  Google Scholar 

  • Ponpon, J.P., Siffert, P.: Open-circuit voltage of MIS silicon solar cells. J. Appl. Phys. 47(7), 3248–3251 (1976)

    Article  ADS  Google Scholar 

  • Shannon, J.M.: Reducing the effective height of a Schottky barrier using low-energy ion implantation. Appl. Phys. Lett. 24(8), 369–371 (1974)

    Article  ADS  Google Scholar 

  • Shannon, J.M.: Control of Schottky barrier height using highly doped surface layers. Solid-State Electron. 19(6), 537–543 (1976)

    Article  ADS  Google Scholar 

  • Wang, L., Jie, J., Shao, Z., Zhang, Q., Zhang, X., Wang, Y., Lee, S.T.: MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors. Adv. Funct. Mater. 25(19), 2910–2919 (2015)

    Article  Google Scholar 

  • Wu, C.Y.: Barrier height reduction of the Schottky barrier diode using a thin highly doped surface layer. J. Appl. Phys. 51(9), 4919–4922 (1980)

    Article  ADS  Google Scholar 

  • Wu, Y., Zhang, X., Jie, J., Xie, C., Zhang, X., Sun, B.: Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells. J. Phys. Chem. C 117(23), 11968–11976 (2013)

    Article  Google Scholar 

  • Xie, C., Jie, J., Nie, B., Yan, T., Li, Q., Lv, P.: Schottky solar cells based on graphene nanoribbon/multiple silicon nanowires junctions. Appl. Phys. Lett. 100(19), 193103 (2012)

    Article  ADS  Google Scholar 

  • Yuan, X., Tang, L., Wang, P., Chen, Z., Zou, Y., Su, X., Chen, F.: Wafer-scale arrayed pn junctions based on few-layer epitaxial GaTe. Nano Res. 8(10), 3332–3341 (2015)

    Article  Google Scholar 

  • Zheng, Q.B., Gudarzi, M.M., Wang, S.J., Geng, Y., Li, Z., Kim, J.K.: Improved electrical and optical characteristics of transparent graphene thin films produced by acid and doping treatments. Carbon 49(9), 2905–2916 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by research fund of Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology (No. SKLPSTKF201505), National Natural Science Foundation of China (Nos. 61306122, 61404012, 11347021).Thanks are also given to The Shanghai Institute of Technical Physics (SITP) for software support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, Y., Zhang, D., Ma, Y. et al. Effect of near surface inverse doping on graphene silicon heterojunction solar cell. Opt Quant Electron 48, 199 (2016). https://doi.org/10.1007/s11082-016-0471-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0471-8

Keywords

Navigation