Skip to main content
Log in

Terahertz spectroscopy and machine learning algorithm for non-destructive evaluation of protein conformation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Given the condition that protein conformation and activity are highly susceptible to environment factors such as temperature and pH, evaluation of protein conformation and activity is urgently needed in many fields. For example, most protein drugs need a stable and proper environment during production, storage and transportation, and it’s an enormous challenge to maintain protein activity throughout the whole process. Therefore, it’s necessary to ensure the safety and effectiveness of protein drugs by monitoring their activity before use. In our study, we presented an improved method for non-destructive evaluation of protein conformation and biological activity by terahertz spectroscopy combined with t-SNE-XGBoost. Firstly, bovine serum albumin (BSA) samples heated to different temperature were measured with THz-TDS. The obtained results indicated that native-conformation BSA will undergo transient states in the process of temperature induced denaturation. However, for any single given sample, it’s difficult to identify its conformation and activity directly by using the measured raw terahertz data. Therefore, we applied several different algorithms to the raw data for recognition of BSA samples with different conformation and activity induced by temperature. Finally, the models obtained by different algorithms were evaluated by calculating the root mean standard error of prediction (RMSEP) and the correlation coefficient of prediction (\(R_p\)). The THz-TDS plus t-SNE-XGBoost proved to be an effective non-destructive and label-free method for evaluation of protein conformation and activity. It can provide a new technique in many applications, such as pharmaceutical industry, clinical diagnosis and quality control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baqir, M.A., Farmani, A., Fatima, T., Raza, M.R., Shaukat, S.F., Mir, A.: Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl. Opt. 57(31), 9447–9454 (2018)

    Article  ADS  Google Scholar 

  • Berends, H.I., Wolkorte, R., IJzerman, M.J., van Putten, M.J.A.M.: Differential cortical activation during observation and observation-and-imagination. Exp. Brain Res. 229(3), 337–345 (2013)

    Article  Google Scholar 

  • Bian, L., Wu, D., Hu, W.: Temperature-induced conformational transition of bovine serum albumin in neutral aqueous solution by reversed-phase liquid chromatography. Biomed. Chromatogr. 28(2), 295–301 (2014)

    Article  Google Scholar 

  • Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  • Chang, L., Pikal, M.J.: Mechanisms of protein stabilization in the solid state. J. Pharm. Sci. 98(9), 2886–2908 (2010)

    Article  Google Scholar 

  • Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: ACM Sigkdd International Conference on Knowledge Discovery and Data Mining (2016)

  • Chen, Q., Jiang, P., Zhao, J.: Measurement of total flavone content in snow lotus (saussurea involucrate) using near infrared spectroscopy combined with interval pls and genetic algorithm. Spectroc. Acta Part A Mol. Biomol. Spectrosc. 76(1), 50–55 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  • Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  • Duvillaret, L., Garet, F., Coutaz, J. L. : A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996)

    Article  ADS  Google Scholar 

  • Exter, M.V., Fattinger, C., Grischkowsky, D.: Terahertz time-domain spectroscopy of water vapor. Opt. Lett. 14(20), 1128–1130 (1989)

    Article  ADS  Google Scholar 

  • Farmani, A.: Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. J. Opt. Soc. Am. B 36(2), 401–407 (2019)

    Article  ADS  Google Scholar 

  • Farmani, A., Mir, A., Bazgir, M., Zarrabi, F.B.: Highly sensitive nano-scale plasmonic biosensor utilizing Fano resonance metasurface in THz range: numerical study. Phys. E 104, 233–240 (2018)

    Article  Google Scholar 

  • Farmani, H., Farmani, A., Biglari, Z.: A label-free graphene-based nanosensor using surface plasmon resonance for biomaterials detection. Phys. E 116, 113730 (2020)

    Article  Google Scholar 

  • Kistenev, Y.V., Borisov, A.V., Titarenko, M.A., Baydik, O.D., Shapovalov, A.V.: Diagnosis of oral lichen planus from analysis of saliva samples using terahertz time-domain spectroscopy and chemometrics. J. Biomed. Opt. 23(4), 045001 (2018)

    Article  ADS  Google Scholar 

  • Lachaux, J.P., Axmacher, N., Mormann, F., Halgren, E., Crone, N.E.: High-frequency neural activity and human cognition: past, present and possible future of intracranial EEG research. Prog. Neurobiol. 98(3), 279–301 (2012)

    Article  Google Scholar 

  • Li, X., Fu, X., Liu, J., Du, Y., Hong, Z.: Investigation of thermal denaturation of solid bovine serum albumin by terahertz dielectric spectroscopy. J. Mol. Struct. 1049, 441–445 (2013)

    Article  ADS  Google Scholar 

  • Lin, V.J.C., Koenig, J.L.: Raman studies of bovine serum albumin. Biopolymers 15(1), 203–218 (1976)

    Article  Google Scholar 

  • Liu, J.: Terahertz spectroscopy and chemometric tools for rapid identification of adulterated dairy product. Opt. Quantum Electron. 49(1), 1 (2017)

    Article  Google Scholar 

  • Liu, W., Zhao, P., Wu, C., Liu, C., Yang, J., Zheng, L.: Rapid determination of aflatoxin B1 concentration in soybean oil using terahertz spectroscopy with chemometric methods. Food Chem. 293, 213–219 (2019)

    Article  Google Scholar 

  • Moriyama, Y., Kawasaka, Y., Takeda, K.: Protective effect of small amounts of sodium dodecyl sulfate on the helical structure of bovine serum albumin in thermal denaturation. J. Colloid Interface Sci. 257(1), 41–46 (2003)

    Article  ADS  Google Scholar 

  • Nejad, H.E., Mir, A., Farmani, A.: Supersensitive and tunable nano-biosensor for cancer detection. IEEE Sens. J. 19(13), 4874–4881 (2019)

    Article  ADS  Google Scholar 

  • Qin, B., Li, Z., Luo, Z., Li, Y., Zhang, H.: Terahertz time-domain spectroscopy combined with PCA-CFSFDP applied for pesticide detection. Opt. Quantum Electron. 49(7), 244 (2017)

    Article  Google Scholar 

  • Ryu, J.K., Kim, H.S., Nam, D.H.: Current status and perspectives of biopharmaceutical drugs. Biotechnol. Bioprocess Eng. 17(5), 900–911 (2012)

    Article  Google Scholar 

  • Serita, K., Murakami, H., Kawayama, I., Takahashi, Y., Yoshimura, M., Mori, Y., Tonouchi, M.: Evaluation of human hairs with terahertz wave. Opt. Eng. 53(3), 031205 (2013)

    Article  ADS  Google Scholar 

  • Sinelli, N., Spinardi, A., Egidio, V.D., Mignani, I., Casiraghi, E.: Evaluation of quality and nutraceutical content of blueberries (Vaccinium corymbosum L.) by near and mid-infrared spectroscopy. Postharvest Biol. Technol. 50(1), 31–36 (2008)

    Article  Google Scholar 

  • Sun, X., Zhu, K., Liu, J., Hu, J., Jiang, X., Liu, Y., Gong, Z.: Terahertz spectroscopy determination of benzoic acid additive in wheat flour by machine learning. J. Infrared Millim. Terahertz Waves 40(4), 466–475 (2019)

    Article  Google Scholar 

  • Wang, W.: Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int. J. Pharm. 185(2), 129–188 (1999)

    Article  Google Scholar 

  • Weik, M.: Low-temperature behavior of water confined by biological macromolecules and its relation to protein dynamics. Eur. Phys. J. E 12(1), 153–158 (2003)

    Article  Google Scholar 

  • Xie, Y., Sun, P.: Terahertz data combined with principal component analysis applied for visual classification of materials. Opt. Quantum Electron. 50(1), 46 (2018)

    Article  Google Scholar 

  • Xie, L., Yang, Y., Ying, Y.: The application of terahertz spectroscopy to protein detection: a review. Appl. Spectrosc. Rev. 49(6), 448–461 (2014)

    Article  ADS  Google Scholar 

  • Xu, J., Plaxco, K.W., Allen, S.J.: Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy. Protein Sci. 15(5), 1175–1181 (2006)

    Article  Google Scholar 

  • Yoneyama, H., Yamashita, M., Kasai, S., Kawase, K., Ueno, R., Ito, H., Ouchi, T.: Terahertz spectroscopy of native-conformation and thermally denatured bovine serum albumin (BSA). Phys. Med. Biol. 53(13), 3543–3549 (2008)

    Article  Google Scholar 

  • Youn, E., Jeong, M.K.: Class dependent feature scaling method using naive Bayes classifier for text datamining. Pattern Recognit. Lett. 30(5), 477–485 (2009)

    Article  Google Scholar 

  • Zang, Z., Yan, S., Han, X., Wei, D., Cui, H.-L., Du, C.: Temperature- and pH-dependent protein conformational changes investigated by terahertz dielectric spectroscopy. Infrared Phys. Technol. 98, 260–265 (2019)

    Article  ADS  Google Scholar 

  • Zhan, H., Zhao, K., Zhao, H., Li, Q., Zhu, S., Xiao, L.: The spectral analysis of fuel oils using terahertz radiation and chemometric methods. J. Phys. D Appl. Phys. 49(39), 395101 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (NSFC) (61302007), the China Postdoctoral Science Foundation (2017M610771) and the Innovative Talents Training Program of University of Science and Technology Beijing (F000005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Zhang, Z., Zhao, X. et al. Terahertz spectroscopy and machine learning algorithm for non-destructive evaluation of protein conformation. Opt Quant Electron 52, 225 (2020). https://doi.org/10.1007/s11082-020-02345-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02345-1

Keywords

Navigation