Skip to main content
Log in

Numerical analysis of temperature and stress fields in hybrid indium antimonide arrays detector with laser irradiation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Thermal-stress effects are the major cause of failure in infrared focal-plane arrays detector, during laser irradiation. Based on the established three-dimensional structural model of hybrid indium antimonide infrared focal-plane arrays, the temperature and stress fields of hybrid indium antimonide detectors irradiated by 1.064-μm Gauss pulsed laser are studied, considering the temperature-dependent material parameters. The results indicate that the temperature increase and thermal stress effects are different, in each layer. Especially in indium antimonide chip, which is the uppermost layer of the indium antimonide detector that directly absorbs laser energy, the temperature shows not a smooth decrease as laser intensity from centre to outside, but a concentric-ringed ripple decrease with discontinuous high temperature extremum areas; which induces its own unique stress distributions: during the laser irradiation region, the thermal stress in areas above indium bumps is much lower than that in areas above underfill, but the stress distribution outside the laser irradiation region is exactly the opposite. The temperature and stress distribution in other materials are also different from that in indium antimonide chip. The main reason is that each material has different thermal properties, especially indium bump and underfill, which are alternative distribution in middle layers, have quite different thermal parameters. All these make the temperature and stress distribution in each layer having own characteristics. In addition, the change trend of the maximum temperature and stress in each layer in accordance with the laser pulse number are also studied. The maximum stress as well as temperature always occurs in the indium antimonide chip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bai, J., Hu, W., Guo, N., Lei, W., Lv, Y., Zhang, X., Si, J., Chen, X., Lu, W.: Performance optimization of InSb infrared focal-plane arrays with diffractive microlenses. J. Electron. Mater. 43(8), 2795–2801 (2014)

    Article  ADS  Google Scholar 

  • Bartoli, F., Esterowitz, L., Allen, R., Kruer, M.: A generalized thermal model for laser damage in infrared detectors. J. Appl. Phys. 47(10), 2875–2881 (1976)

    Article  ADS  Google Scholar 

  • Chang, R.W., McCluskey, F.P.: Constitutive relations of indium in extreme temperature electronic packaging based on Anand model. J. Electron. Mater. 38(9), 1855–1859 (2009)

    Article  ADS  Google Scholar 

  • Cheng, X., Liu, C., Silberschmidt, V.V.: Numerical analysis of thermo-mechanical behavior of indium micro-joint at cryogenic temperatures. Comput. Mater. Sci. 52(1), 274–281 (2012)

    Article  Google Scholar 

  • Davis, M., Greiner, M.: Indium antimonide large-format detector arrays. Opt. Eng. 50(6), 1–6 (2011)

    Article  Google Scholar 

  • Duan, X.F., Niu, Y.X., Zhang, C.: Calculation of laser irradiation effect and analysis of laser induced damage threshold in semiconductor. Acta Opt. Sin. 24(8), 1057–1061 (2004)

    Google Scholar 

  • Felter, T.E., Hrubesh, L., Kubota, A., Davila, L.: Laser damage probability studies of fused silica modified by MeV ion implantation. Nucl. Instrum. Methods Phys. Res. B 207(1), 72–79 (2003)

    Article  ADS  Google Scholar 

  • Gibbons, D.F.: Thermal expansion of some crystals with the diamond structure. Phys. Rev. 112(6), 136–140 (1958)

    Article  ADS  Google Scholar 

  • Gu, R., Lei, W., Antoszewski, J., Faraone, L.: Investigation of substrate effects on interface strain and defect generation in MBE-grown HgCdTe. J. Electron. Mater. 45(9), 4596–4602 (2016)

    Article  ADS  Google Scholar 

  • Guo, N., Hu, W.D., Chen, X.S., Lei, W., Lv, Y.Q., Zhang, X.L., Si, J.J., Lu, W.: Optimization for mid-wavelength InSb infrared focal plane arrays under front-side illumination. Opt. Quantum Electron. 45(7), 673–679 (2013)

    Article  Google Scholar 

  • He, Y., Moreira, B.E., Overson, A., Nakamura, S.H., Bider, C., Briscoe, J.F.: Thermal characterization of an epoxy-based underfill material for flip chip packaging. Thermochim. Acta 357–358, 1–8 (2000)

    Article  Google Scholar 

  • He, J.L., Hu, W.D., Ye, Z.H., Lv, Y.Q., Chen, X.S., Lu, W.: Joint FDTD-optical/FEM-electrical numerical simulation of reflection-type subwavelength-microstructure InSb infrared focal-plane arrays. J. Electron. Mater. 45(9), 4552–4556 (2016)

    Article  ADS  Google Scholar 

  • Jiang, J., Tsao, S., O’Sullivan, T., Razeghi, M., Brown, G.J.: Fabrication of indium bumps for hybrid infrared focal plane array applications. Infrared Phys. Technol. 45(2), 143–151 (2004)

    Article  ADS  Google Scholar 

  • Kruer, M., Allen, R., Esterowitz, L., Bartoli, F.: Laser damage in silicon photodiodes. Opt. Quantum Electron. 8(5), 453–458 (1976)

    Article  ADS  Google Scholar 

  • Lei, P., Nie, J.S., Li, H., Bian, J.T., Wang, X.: Theoretical analysis of thermal-stress of CO2 laser on HgCdTe infrared focal plane. Laser Infrared 43(4), 1025–1029 (2013)

    Google Scholar 

  • Li, Q.: Influencing sources for dark current transport and avalanche mechanisms in planar and mesa HgCdTe p–i–n electron-avalanche photodiodes. IEEE Trans. Electron Dev. 65(2), 572–576 (2018)

    Article  ADS  Google Scholar 

  • Li, P.F., Zhang, L.W., Meng, Q.D., Yu, Q.: Thermal-stress coupling analysis on 128 × 128 InSb infrared focal plane array detector. Laser Infrared 43(9), 1025–1029 (2013)

    Google Scholar 

  • Liu, Q.X., Zhong, M., Jiang, D., Qing, W.Z., Cai, B.W., Hao, Q.L., Zhao, F.D.: Finite element analysis of damage threshold of semiconductor irradiated by multiple laser. Laser Infrared 36(8), 670–674 (2006)

    Google Scholar 

  • Meng, Q.D., Zhang, X.L., Zhang, L.W., Lv, Y.Q.: Structural modeling of 128 × 128 InSb focal plane array detector. Acta Phys. Sin. 61(19), 1–6 (2012)

    Google Scholar 

  • Qiu, W.C., Hu, W.D.: Laser beam induced current microscopy and photocurrent mapping for junction characterization of infrared photodetectors. Sci. China Phys. Mech. Astron. 58(2), 1–13 (2015)

    Article  Google Scholar 

  • Rizk, C.G., Pouliquen, P.O., Andreou, A.G.: Flexible readout and integration sensor (FRIS): new class of imaging sensor arrays optimized for air and missile defense. Johns Hopkins Appl. Technol. Dig. 28(3), 252–253 (2010)

    Google Scholar 

  • Rogalski, A.: Recent progress in infrared detector technologies. Infrared Phys. Technol. 54(3), 136–154 (2011)

    Article  ADS  Google Scholar 

  • Shkedy, L., Markovitz, T., Calahorra, Z., Hirsh, I., Shtrichman, I.: Megapixel digital InSb detector for midwave infrared imaging. Opt. Eng. 50(6), 1–8 (2011)

    Article  Google Scholar 

  • Skvortsov, L.A., Abramov, P.I., Kuznetsov, E.V.: Prospects of using quantum-cascade lasers in optoelectronic countermeasure systems. J. Opt. Technol. 84(5), 331–341 (2017)

    Article  Google Scholar 

  • Tang, W., Guo, J., Shao, J.F., Wang, T.F.: Analysis of damage threshold on HgCdTe crystal irradiated by multi-pulsed CO2 laser. Opt. Laser Technol. 58(58), 172–176 (2014)

    Article  ADS  Google Scholar 

  • Wang, D.: Von Mises stress in chemical–mechanical polishing processes. J. Electrochem. Soc. 144(3), 1121–1127 (1997)

    Article  Google Scholar 

  • Wu, S.J., Zhao, X.B., Yang, D.S., Yan, J.: Laser damage in IR detector. Infrared Laser Eng. 42(5), 1184–1188 (2013)

    Google Scholar 

  • Zhang, L.W., Shao, M., Zhang, X.L., Meng, Q.D., Wang, J.C., Lv, Y.Q.: Three-dimensional modeling and simulation of large-format hybrid indium antimonide detector arrays. Opt. Eng. 52(10), 1–7 (2013a)

    Google Scholar 

  • Zhang, L.W., Meng, Q.D., Zhang, X.L., Yu, Q., Lv, Y.Q., Si, J.J.: Modeling and stress analysis of large format InSb focal plane arrays detector under thermal shock. Infrared Phys. Technol. 60, 29–34 (2013b)

    Article  ADS  Google Scholar 

  • Zhang, L.W., Tian, W., Meng, Q.D., Sun, M.F., Li, N., Lei, Z.: Analysis on structural stress of 64 × 64 InSb IRFPAs with temperature dependent elastic underfill. J. Sens. 2014(10), 1–7 (2014)

    ADS  Google Scholar 

  • Zhang, L.W., Li, N., Song, L., Meng, Q.D., Xu, M.Y., Lei, Z.: Influences of electrode material and design on the reliability of IRFPAs detector under thermal shock. Opt. Quantum Electron. 49(2), 1–9 (2017)

    Google Scholar 

  • Zhang, L.W., Li, N., Meng, Q.D., Zhang, J.C., Lei, Z.: Study on thermal effects of InSb infrared focal plane arrays irradiated by pulsed laser. Opt. Quantum Electron. 50(5), 1–12 (2018)

    Article  Google Scholar 

  • Zhao, J.J., Liu, J., Song, C.R., Niu, Y.X.: Thermal and mechanical damage in InSb(PV) detector induced by repetitive pulse laser. J. Ordnance Eng. Coll. 18(5), 23–26 (2006)

    Google Scholar 

Download references

Acknowledgements

This research has been supported by National Natural Science Foundation of China (Nos. 61205090, 61804046), Foundation of Educational Commission of Henan Province (No. 19A510001), and Henan Provincial Programs for Science and Technology Development (No. 182102210295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwen Zhang.

Ethics declarations

Conflict of interest

There is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, Y., Zhang, J. et al. Numerical analysis of temperature and stress fields in hybrid indium antimonide arrays detector with laser irradiation. Opt Quant Electron 51, 262 (2019). https://doi.org/10.1007/s11082-019-1975-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1975-9

Keywords

Navigation