Skip to main content
Log in

Chirped soliton solutions in optical medium

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we study a nonlinear Schrödinger equation with quintic nonlinearity, self-steepening and self-frequency shift terms describing the polarization mode in an optical fiber. As results, several new chirped soliton solutions not yet reported in the literature are obtained. These solutions are found without using computer codes. The solutions are bright, dark and cnoidal solitons. The method used here is very effective and simple and can be applied to other types of nonlinear equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Abdel, K.D., Faical, A., Triki, H., Biswas, A., Zhou, Q., Seithuti, P.M., Belic, M.: Propagation of chirped gray optical dips in nonlinear metamaterials. Opt. Commun. 430, 461–466 (2019)

    Article  ADS  Google Scholar 

  • Abdoulkary, S., Mohamadou, A., Dafounansou, O., Yamigno, D.S.: Exact solutions of the nonlinear differential-difference equations associated with the nonlinear electrical transmission line through a variable-coefficient discrete (G’/G)-expansion method. Chin. Phys. B 23, 120506–120506 (2014)

    Article  Google Scholar 

  • Abdul-Majid, W.: The tanh method for traveling wave solutions to the Zhiber–Shabat and other related equations. Commun. Nonlinear Sci. Numer. Simul. 13, 584–592 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  • Agarwal, G.P.: Nonlinear Fiber Optics. Academic Press, London (2001)

    Google Scholar 

  • Alka, A.G., Rama, G., Kumar, C.N., Thokala, S.R.: Chirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrödinger equation with self-steepening and self-frequency shift. Phys. Rev. A 84(1–6), 063830-1–063830-6 (2011)

  • Arbabi, S., Najafi, M.: Exact solitary wave solutions of the complex nonlinear Schrödinger equations. Optik 127, 4682–4688 (2016)

    Article  ADS  Google Scholar 

  • Arshad, M., Seadawy, A.R., Dianchen, L.: Optical soliton solutions of the generalized higher-order nonlinear Schrödinger equations and their applications. Opt. Quantum Electron. 421, 1–16 (2017)

    Google Scholar 

  • Bekir, A.: Application of the Exp-function method for nonlinear differential-difference equations. Appl. Math. Comput. 215, 4049–4053 (2010)

    MathSciNet  MATH  ADS  Google Scholar 

  • Bekir, A., Kaplan, M.: Exponential rational function method for solving nonlinear equations arising in various physical models. Chin. J. Phys. 54, 365–370 (2016)

    Article  MathSciNet  Google Scholar 

  • Biswas, A., Konar, S.: Introduction to Non-Kerr Law Optical Solitons. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  • Biswas, A., Fessak, M., Johnson, S., Beatrice, S., Milovic, D., Jovanoski, Z., Kohl, R., Majid, F.: Optical soliton perturbation in non-Kerr law media: traveling wave solution. Opt. Laser Technol. 44, 1775–1780 (2012)

    Google Scholar 

  • Boudoue, H.M., Gambo, B., Serge Doka, Y., Kofane, T.C.: Travelling wave solutions and soliton solutions for the nonlinear transmission line using the generalized Riccati equation mapping method. Nonlinear Dyn. 84, 171–177 (2016)

    Article  MathSciNet  Google Scholar 

  • Chunyu, Y., Wenyi, L., Weitian, Y., Mengli, L., Yujia, Z., Guoli, M., Ming, L., Wenjun, L.: Amplification, reshaping, fission and annihilation of optical solitons in dispersion-decreasing fiber. Nonlinear Dyn. 92(2), 203–213 (2018)

    Article  Google Scholar 

  • Dianchen, L., Seadawy, A.R., Arshad, M.: Bright-dark solitary wave and elliptic function solutions of unstable nonlinear Schrödinger equation and their applications. Opt. Quantum Electron. 23, 1–10 (2018)

    Google Scholar 

  • Doka Yamigno, S., Mibaile, J., Gambo, B., Kofane, T.C.: Optical chirped soliton in metamaterials. Nonlinear Dyn. 90, 13–18 (2017)

    Article  MathSciNet  Google Scholar 

  • Fan, E.G.: Extended Tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  • Gouveia-Neto, A.S., Gomes, A.S.L., Taylor, J.R.: Pulses of four optical cycles from an optimized optical fibre grating pair soliton pulse compressor at 1.32 \(\mu m\). J. Mod. Opt. 35, 7–10 (1988)

    Article  Google Scholar 

  • Goyal, A.A., Gupta, R., Kumar, C.N., Raju, T.S.: Chirped femtosecond solitons and double-kink solitons in the cubicquintic nonlinear Schrödinger equation with self-steepening and self-frequency shift. Phys. Rev. A 84(6), 063810–063817 (2011)

    Article  Google Scholar 

  • Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973)

    Article  ADS  Google Scholar 

  • Hosseini, K., Zabihi, A., Samadani, F., Ansari, R.: New explicit exact solutions of the unstable nonlinear Schrödinger’s equation using the expa and hyperbolic function methods. Opt. Quantum Electron. 82, 1–8 (2018)

    Google Scholar 

  • Inc, M., Evans, D.J.: On travelling wave solutions of some nonlinear evolution equations. Int. J. Comput. Math. 81, 191–202 (2004)

    Article  MathSciNet  Google Scholar 

  • Jinping, T., Guosheng, Z.: Chirped soliton-like solutions for nonlinear Schrödinger equation with variable coefficients. Opt. Commun. 262, 257–262 (2006)

    Article  Google Scholar 

  • Kaplan, M., Arzu, A., Bekir, A.: Solving space-time fractional differential equations by using modified simple equation method. Commun. Theor. Phys. 65, 563–568 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  • Kuang, Z., Yueyi, Y., Dawei, Z., Xumin, D., Badreddine, R., Shah, N.B., Manjun, L., Kun, T., Qun, W.: Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region. Opt. Express 26, 1351–1360 (2018)

    Article  Google Scholar 

  • Kudryashov, N.A.: Methods of nonlinear mathematical Phys. Intellect. 364 (2010) (in Russian)

  • Li, Q., Kutz, J.N., Wai, P.K.A.: Cascaded higher order soliton for non-adiabatic pulse compression. J. Opt. Soc. Am. B 27, 2180–2189 (2010)

    Article  ADS  Google Scholar 

  • Lian-Li, F., Shou-Fu, T., Hui, Y., Li, W., Tian-Tian, Z.: On periodic wave solutions and asymptotic behaviors to a generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation. Eur. Phys. J. Plus 131(241), 1–18 (2016)

    Google Scholar 

  • Liu, S.K., Fu, Z.T., Liu, S.D., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  • Liu, M., Liu, W., Yan, P., Fang, S., Teng, H., Wei, Z.: Highpower MoTe\(_{2}\)-based passively Q-switched erbium-doped fiber laser. Chin. Opt. Lett. 16, 020007-1–020007-5 (2018)

  • Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, 650–654 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  • Manafian, J.: Optical soliton solutions for Schrödinger type nonlinear evolution equations by the tan\((\phi (\xi )/2)\)-expansion method. Optik 127, 4222–4245 (2016)

    Article  Google Scholar 

  • Mibaile, J., Malwe Boudoue, H., Gambo, B., Yamigno Doka, S., Kofane, T.C.: Chirped solitons in derivative nonlinear Schrödinger equation. Chaos Solitons Fractals 107, 49–54 (2018)

    Article  MathSciNet  Google Scholar 

  • Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980)

    Article  ADS  Google Scholar 

  • Russell, J.S.: Report on waves. In: Fourteenth Meeting of the British Association for the Advancement of Science (1844)

  • Seadawy, A.R.: Modulation instability analysis for the generalized derivative higher order nonlinear Schrodinger equation and its the bright and dark soliton solutions. J. Electromagn. Waves Appl. 31, 1353–1362 (2017)

    Article  MathSciNet  Google Scholar 

  • Seadawy, A.R., Lu, D.: Bright and dark solitary wave soliton solutions for the generalized higher order nonlinear Schrodinger equation and its stability. Results Phys. 7, 43–48 (2017)

    Article  ADS  Google Scholar 

  • Tala-Tebue, E., Tsobgni-Fozap, D.C., Kenfack-Jiotsa, A., Kofane, T.C.: Envelope periodic solutions for a discrete network with the Jacobi elliptic functions and the alternative (G’/G)-expansion method including the generalized Riccati equation. Eur. Phys. J. Plus 129, 1–10 (2014)

    Article  Google Scholar 

  • Tala-Tebue, E., Djoufack, Z.I., Fendzi-Donfack, E., Kenfack-Jiotsa, A., Kofané, T.C.: Exact solutions of the unstable nonlinear Schrödinger equation with the new Jacobi elliptic function rational expansion method and the exponential rational function method. Optik 127, 11124–11130 (2016)

    Article  ADS  Google Scholar 

  • Tala-Tebue, E., Djoufack, Z.I., Kenfack-Jiotsa, A., Kapche-Tagne, F., Kofané, T.C.: Second neighbors inducing common frequencies for bright and dark solitons. Eur. Phys. J. Plus 132, 1–10 (2017)

    Article  Google Scholar 

  • Tala-Tebue, E., Seadawy, A.R., Kamdoum-Tamo, P.H., Lu, D.: Dispersive optical soliton solutions of the higher order nonlinear Schrodinger dynamical equation via two diferent methods and its applications. Eur. Phys. J. Plus 133, 289-1–289-10 (2018)

  • Triki, H., Porsezian, K., Philippe, G.: Chirped soliton solutions for the generalized nonlinear Schrödinger equation with polynomial nonlinearity and non-Kerr terms of arbitrary order. J. Opt. 18, 1–9 (2016)

    Article  Google Scholar 

  • Triki, H., Biswas, A., Babatin, M.M., Zhou, Q.: Chirped dark solitons in optical metamaterials. Optik 158, 312–315 (2018)

    Article  ADS  Google Scholar 

  • Wang, M.L.: Solitary wave solutions for variant Boussinesq equations. Phys. Lett. A. 199, 169–172 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  • Wang, M.L., Li, X.Z.: Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation. Chaos Solitons Fractals 24, 1257–1268 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  • Weitian, Y., Chunyu, Y., Mengli, L., Yujia, Z., Wenjun, L.: Interactions of solitons, dromion-like structures and butterfly-shaped pulses for variable coefficient nonlinear Schrödinger equation. Optik 159, 21–30 (2018)

    Article  Google Scholar 

  • Wenjun, L., Ya-Nan, Z., Mengli, L., Bo, W., Shaobo, F., Hao, T., Ming, L., Li-Min, L., Zhiyi, W.: Optical properties and applications for MoS\(_{2}\)–Sb\(_2\)Te\(_3\)–MoS\(_2\) heterostructure materials. Photon. Res. 6, 220–227 (2018)

    Article  Google Scholar 

  • Yan, Z.Y.: Abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional integrable Davey–Stewartson-type equation via a new method. Chaos Solitons Fractals 18, 299–309 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  • Yomba, E., Gholam-Ali, Z.: Rogue-pair and dark-bright-rogue waves of the coupled nonlinear Schrödinger equations from inhomogeneous femtosecond optical fibers. CHAOS 26, 1–11 (2016)

    Article  Google Scholar 

  • Zayed, E.M.E., Abdul-Ghani, A.: New extended auxiliary equation method for finding many new Jacobi elliptic function solutions of three nonlinear Schrödinger equations. Waves Random Complex Media 27, 420–439 (2016a)

    Article  ADS  Google Scholar 

  • Zayed, E.M.E., Abdul-Ghani, A.: Exact solutions and optical soliton solutions for the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation. Optik 127, 4970–4983 (2016b)

    Article  ADS  Google Scholar 

  • Zayed, E.M.E., Alurrfi, K.A.E.: Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrödinger-type equations. Appl. Math. Comput. 289, 111–131 (2016)

    MathSciNet  Google Scholar 

  • Zayed, E.M.E., Zedan, H.A., Gepreel, K.A.: On the solitary wave solutions for nonlinear Hirota–Sasuma coupled KDV equations. Chaos Solitons Fractals 22, 285–303 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  • Zayed, E.M.E., Ayad, M.S., Alurrfi, K.A.E.: The (G′/G,1/G)-expansion method and its applications for constructing many new exact solutions of the higherorder nonlinear Schrödinger equation and the quantum Zakharov–Kuznetsov equation. Opt. Quantum Electron. 96, 1–18 (2018)

    Google Scholar 

  • Zhao, H., Ji-Guang, H., Wei-Tao, W., Hong-Yong, A.: Applications of extended hyperbolic function method for quintic discrete nonlinear Schrödinger equation. Commun. Theor. Phys. 47, 474–478 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous reviewers for their helpful comments and suggestions. They are also grateful to OQEl for their help during the production of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Tala-Tebue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tala-Tebue, E., Djoufack, Z.I., Yamgoue, S.B. et al. Chirped soliton solutions in optical medium. Opt Quant Electron 51, 7 (2019). https://doi.org/10.1007/s11082-018-1721-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1721-8

Keywords

Navigation