Skip to main content
Log in

Numerical analysis of tin incorporated group IV alloy based MQWIP

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a detailed theoretical analysis of the responsivity and frequency response in a strain balanced SiGeSn/GeSn multiple quantum well infrared photodetector (MQWIP) is presented. Initially, responsivity is calculated by solving continuity and rate equation at steady state considering inter well carrier transport mechanism. Transient response of the device is also derived to calculate bandwidth of the detector. Result shows that responsivity increases but bandwidth decreases with increase in number of wells. Further, responsivity bandwidth product in the MQWIP for different number of wells is also determined to study this trade-off.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ang, K.W., et al.: Silicon photonics technologies for monolithic electronic–photonic integrated circuit (EPIC) applications: current progress and future outlook. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), Baltimore, pp. 1–4 (2009)

  • Bhattacharya, P.: Semiconductor Optoelectronic Devices, 2nd edn. Pearson Education Inc., New Jersey (1994)

    Google Scholar 

  • Chang, G.E., Chang, S.W., Chuang, S.L.: Strain-balanced GezSn1–zSixGeySn1–x–y multiple-quantum-well lasers. IEEE JQE 46, 1813–1820 (2010)

    Article  Google Scholar 

  • Das, M.K., Das, N.R.: Calculating the responsivity of a resonant cavity enhanced Si1−xGex/Si multiple quantum well photodetector. JAP 105, 093118:1–093118:8 (2009)

    Google Scholar 

  • Daukes Ekin, N.J., Kawaguchi, K., Zhang, J.: Strain-balanced criteria for multiple quantum well structures and its signature in X-ray rocking curves. Cryst. Growth Des. 2(4), 287–292 (2002)

    Article  Google Scholar 

  • Downs, C., Vandervelde, T.E.: Progress in infrared photodetectors since 2000. Sensors 13, 5054–5098 (2013)

    Article  Google Scholar 

  • El Kurdi, M., Kociniewski, T., Ngo, T.-P., Boulmer, J., Débarre, D., Boucaud, P., Damlencourt, J.F., Kermarrec, O., Bensahel, D.: Enhanced photoluminescence of heavily n-doped germanium. APL 94, 191107-1–191107-3 (2009)

    Google Scholar 

  • Ershov, M., Hamaguchi, C., Ryzhii, V.: Device physics and modelling of multiple quantum well infrared photodetectors. JJAP 35, 1395–1400 (1996)

    ADS  Google Scholar 

  • Fischetti, M.V., Laux, S.E.: Band structure, deformation potentials and carrier mobility in strained Si, Ge, and SiGe alloys. JAP 80, 2234–2252 (1996)

    ADS  Google Scholar 

  • Gassenq, A., Gencarelli, F., Van Campenhout, J., Shimura, Y., Loo, R., Narcy, G., Vincent, B., Roelkens, G.: GeSn/Ge heterostructure short-wave infrared photodetectors on silicon. Opt. Express 20, 27297–27303 (2012)

    Article  ADS  Google Scholar 

  • Ghetmiri, S.A., et al.: Study of a SiGeSn/GeSn/SiGeSn structure toward direct bandgap type-I quantum well for all group-IV optoelectronics. Opt. Lett. 42(3), 387–390 (2017)

    Article  ADS  Google Scholar 

  • Guériaux, V., et al.: Quantum well infrared photodetectors: present and future. Opt. Eng. 50(6), 061013 (2011). https://doi.org/10.1117/1.3584838

    Article  ADS  Google Scholar 

  • Kouvetakis, J., Menedez, J., Chizmeshya, A.V.G.: Tin based group IV semiconductors: new platforms for opto and micro electronics and silicon. Annu. Rev. Mater. Res. 36, 497–554 (2006)

    Article  ADS  Google Scholar 

  • Levine, B.F.: Quantum well infrared photodetectors. J. Appl. Phys. 74, R1 (1993). https://doi.org/10.1063/1.354252

    Article  ADS  Google Scholar 

  • Lo, G.Q., Ang, K.W., Liow, T.Y., Fang, Q., Zhang, J., Zhu, S.Y., Song, J.F., Xiong, Y.Z., Ren, F.F., Yu, M.B., Kwong, D.-L.: Silicon photonics technologies for monolithic electronic–photonic integrated circuit. ECS Trans. 28, 3–11 (2010)

    Article  Google Scholar 

  • Pareek, P., Das, M.K.: Theoretical analysis of direct transition in SiGeSn/GeSn strain balanced QWIP. Opt. Quantum Electron. 48, 1–11 (2016)

    Article  Google Scholar 

  • Pareek, P., Das, M.K., Kumar, S.: Theoretical analysis of tin incorporated group IV alloy based QWIP. Superlatt. Microstruct. 107, 56–68 (2017a)

    Article  ADS  Google Scholar 

  • Pareek, P., Ranjan, R., Das, M.K.: Numerical analysis of Tin incorporated group IV alloy based MQWIP. In: Proceedings of 17th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Copenhagen, Denmark, pp. 141–142. IEEE Explorer (2017b). https://doi.org/10.1109/nusod.2017.8010031

  • Roelkens, G., et al.: Silicon-based photonic integration beyond the telecommunication wavelength range. IEEE JSQE (2014). https://doi.org/10.1109/jstqe.2013.2294460

    Google Scholar 

  • Rogalski, A.: Infrared detectors: an overview. Infrared Phys. Technol. 43, 187–210 (2002)

    Article  ADS  Google Scholar 

  • Ryzhii, V.: Theory of quantum well IR photodetectors with tunneling electron injection. IEEE Proc. Optoelectron. 144, 343–349 (1997)

    Article  Google Scholar 

  • Ryzhii, V.: High-frequency performance of single quantum well infrared photodetectors at high power densities. IEEE Trans. Electron Devices 45(8), 1797–1803 (1998a)

    Article  ADS  Google Scholar 

  • Ryzhii, V.: Impact of transit time and capture effects on high-frequency performance of multiple quantum well infrared photodetectors. IEEE Trans. Elect. Devices 45, 293–298 (1998b)

    Article  ADS  Google Scholar 

  • Soref, R.A.: The past, present, and future of silicon photonics. IEEE JSTQE 12, 1678–1687 (2006)

    Google Scholar 

  • Sze, S.M.: Physics of Semiconductor Devices. Wiley-Interscience, New Jersey (1969)

    Google Scholar 

  • Werner, J., et al.: Germanium–tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy. APL 98(6), 061108 (2011). https://doi.org/10.1063/1.3555439

    Google Scholar 

  • Zheng, J., et al.: GeSn pin photodetectors with GeSn layer grown by magnetron sputtering epitaxy. APL 108(3), 033503 (2016). https://doi.org/10.1063/1.4940194

    Google Scholar 

Download references

Acknowledgements

This work is partly supported by the Center of Excellence in Renewable Energy, project under MHRD, Govt. of India (F. No. 5-6/2013-TS-VII) at Indian Institute of Technology (Indian School of Mines) Dhanbad, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Pareek.

Additional information

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices, NUSOD’ 17.

Guest edited by Matthias Auf der Maur, Weida Hu, Slawomir Sujecki, Yuh-Renn Wu, Niels Gregersen, Paolo Bardella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pareek, P., Ranjan, R. & Das, M.K. Numerical analysis of tin incorporated group IV alloy based MQWIP. Opt Quant Electron 50, 179 (2018). https://doi.org/10.1007/s11082-018-1447-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1447-7

Keywords

Navigation