Skip to main content
Log in

Exact periodic and explicit solutions of the conformable time fractional Ginzburg Landau equation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The Ginzburg–Landau (GL) equation is one of the most important nonlinear equation in physics. It is used to model a vast variety of phenomena in physics like nonlinear waves, second order phase transitions, Bose–Einstein condensation, superfluidity, superconductivity, liquid crystals and strings in field theory. In this work, new exact, periodic and explicit solutions of a time fractional GL equation involving conformable fractional derivatives with Kerr law nonlinearity have been found. The Kerr law nonlinearity is due to the non-harmonic motion of electrons under the influence of an applied field. To determine the solution of the model, we have employed a couple of integration algorithms, solitary wave ansatz and \(\exp (-\varphi ({\chi }\))) methods. New periodic and hyperbolic soliton solutions are found as well as the constraint condition for the existence of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Abdullah, M., Butt, A.R., Raza, N., Haque, E.U.: Semi-analytical technique for the solution of fractional Maxwell fluid. Can. J. Phys. 94, 472–478 (2017)

    Article  ADS  Google Scholar 

  • Abdullah, M., Butt, A.R., Raza, N., Alshomrani, A.S., Alzahrani, A.K.: Analysis of blood flow with nanoparticles induced by uniform magnetic field through a circular cylinder with fractional Caputo derivatives. J. Magn. Magn. Mater 446, 28–36 (2018)

    Article  ADS  Google Scholar 

  • Akhmediev, N.N., Soto-Crespo, J.M., Town, A.: Pulsating solitons, chaotic dynamics, period doubling and pulse coexistence in mode-locked lasers: complex Ginzburg–Landau equation approach. Phys. Rev. E 63, 056602 (2001). https://doi.org/10.1103/PhysRevE.63.056602

    Article  ADS  Google Scholar 

  • Anderson, D.R., Ulness, D.J.: Properties of the Katugampola fractional derivative with potential application in quantum mechanics. J. Math. Phys. 56, 063502 (2015). https://doi.org/10.1063/1.4922018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Aranson, I.S.: The world of the complex Ginzburg–Landau equation. Rev. Modern Phys. 74(1), 99–143 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Milovic, D., Moraru, L., Savescu, M., Biswas, A.: Optical solitons with polynomial and triple power law nonlinearities and spatiotemporal dispersion. Proc. Rom. Acad. Ser. A 15(3), 235–240 (2014)

    MathSciNet  Google Scholar 

  • Biswas, A.: Temporal 1-soliton solution of the complex Ginzburg–Landau equation with power law nonlinearity. Prog. Electromagn. Res. 96, 1–7 (2009)

    Article  Google Scholar 

  • Biswas, A., Milovic, D.: Traveling wave solutions of the nonlinear Schrdingers equation in non-Kerr law media. Commun. Nonlinear Sci. Numer. Simul. 14(5), 1993–1998 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Biswas, A., Mirzazadeh, M., Eslami, M., Milovic, D., Belic, M.: Solitons in optical metamaterials by functional variable method and first integral approach. Frequenz 68(11–12), 525–530 (2014)

    ADS  Google Scholar 

  • Ebadi, G., Biswas, A.: The \(\acute{G}\)/G method and topological soliton solution of the K(m, n) equation. Commun. Nonlinear Sci. Numer. Simul. 16, 2377–2382 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Eslami, M., Khodadad, F.S., Rezazadeh, H.: The first integral method applied to the Bogoyavlenskii equations by means of conformable fractional derivative. Opt. Quantum Electron. 49, 391 (2017a)

    Article  Google Scholar 

  • Eslami, M., Rezazadeh, H., Rezazadeh, M., Mosavi, S.S.: Exact solutions to the space time fractional Schrodinger–Hirota equation and the space time modified KDV–Zakharov–Kuznetsov equation. Opt. Quantum Electron. 49, 279 (2017b)

    Article  Google Scholar 

  • Ferdi, Y.: Some applications of fractional order calculus to design digital filters for biomedical signal processing. J. Mech. Med. Bio 12, 13 (2012). https://doi.org/10.1142/s0219519412400088

    Article  Google Scholar 

  • Ginzburg, V.L., Landau, L.D.: On theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950)

    Google Scholar 

  • Ginzburg, V.L., Landau, L.D.: On account of anisotropy in the theory of superconductivity. Zh. Eksp. Teor. Fiz. 236, 216 (1952)

    Google Scholar 

  • Hosseini, K., Bekir, A., Ansari, A.: Exact solutions of nonlinear conformable time-fractional Boussinesq equations usin exp(-\(\phi (\epsilon )\))-expansion method. Opt. Quantum Electron. 49, 131 (2017)

    Article  Google Scholar 

  • Khalil, R., Al-Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Khodadad, F.S., Nazari, F., Eslami, M., Rezazadeh, H.: Soliton solutions of conformable fractional Zakhrov–Kuznetsov equation with dual-power law nonlinearity. Opt. Quantum Electron. 49, 384 (2017)

    Article  Google Scholar 

  • Lu, H., Lü, S., Feng, Z.: Asymptotic dynamics of 2D fractional complex Ginzburg–Landau equation. Int. J. Bifurc. Chaos 23, 1350202 (2013). https://doi.org/10.1142/S0218127413502027

    Article  MathSciNet  MATH  Google Scholar 

  • Matusu, R.: Application of fractional order calculus to control theory. Int. J Math. Models Methods Appl. Sci. 5, 1162–1169 (2011)

    Google Scholar 

  • Millot, V., Sire, Y.: On a fractional Ginzburg–Landau equation and 1/2-harmonic maps into spheres. Arch. Ration. Mech. Anal. 215, 125–210 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Milovanov, A., Rasmussen, J.: Fractional generalization of the Ginzburg–Landau equation: an unconventional approach to critical phenomenon in complex media. Phys. Lett. A 337, 75–80 (2005)

    Article  ADS  MATH  Google Scholar 

  • Mirzazadeh, M., Ekici, M., Sonmezoglu, A., Eslami, M., Zhou, Q., Kara, A.H., Milovic Majid, F.B., Biswas, A., Belic, M.: Optical solitons with complex Ginzburg–Landau equation. Nonlinear Dyn. 85, 1979–2016 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Mvogo, A., Tambue, A., Ben-Bolie, G., Kofane, T.: Localized numerical impulses solutions in diffuse neural networks modeled by the complex fractional Ginzburg–Lindau equation (2016). arXiv:1411.7983

  • Pu, X., Guo, B.: Well-posedness and dynamics for the fractional Ginzburg–Landau equation. Appl. Anal. 92, 318–334 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Sardar, A., Husnine, S.M., Rizvi, S.T.R., Younis, M., Ali, K.: Multiple travelling wave solutions for electrical transmission line model. Nonlinear Dyn. 82(3), 1317–1324 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Shwetanshumala, S.: Temporal solitons of modified complex Ginzburg Landau equation. Prog. Electromagn. Res. Lett. 3, 17–24 (2008)

    Article  Google Scholar 

  • Singla, K., Gupta, R.K.: Spacetime fractional nonlinear partial differential equations: symmetry analysis and conservation laws. Nonlinear Dyn. 89, 321–331 (2017)

    Article  MATH  Google Scholar 

  • Tarasov, V.: Psi-series solution of fractional Ginzburg–Landau equation. J. Phys. A Math. Gen. 39, 83–95 (2006)

    MathSciNet  MATH  Google Scholar 

  • Tarasov, V., Zaslavsky, G.M.: Fractional Ginzburg–Landau equation for fractal media. Physica A 354, 249–261 (2005)

    Article  ADS  Google Scholar 

  • Tarasov, V., Zaslavsky, G.M.: Fractional dynamics of coupled oscillators with long-range interaction. Chaos 16, 023110 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Tarasova, V.V.: Fractional dynamics of natural growth and memory effect in economics. Eur. Res. 12, 30–37 (2016)

    Google Scholar 

  • Wang, Q., Tong, D.: The flow analysis of viscoelastic fluid with fractional order derivative in horizontal well. Transp. Porous Med. 81, 295–303 (2010)

    Article  MathSciNet  Google Scholar 

  • Weitzner, H., Zaslavsky, G.M.: Some applications of fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 8, 273–281 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Younis, M., Ali, S.: Solitary wave and shock wave solitons to the transmission line model for nano-ionic currents along microtubules. Appl. Math. Comput. 246, 460–463 (2014a)

    MathSciNet  MATH  Google Scholar 

  • Younis, M., Ali, S.: New applications to solitary wave ansatz. Appl. Math. 5, 969–974 (2014b)

    Article  Google Scholar 

  • Younis, M., Ali, S.: Bright, dark, and singular solitons in magneto-electro-elastic circular rod. Waves Random Complex Media 25(4), 549–555 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Younis, M., Ali, S., Mahmood, S.A.: Solitons for compound KdV-Burgers equation with variable coefficients and power law nonlinearity. Nonlinear Dyn. 81(3), 1191–1196 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, D., Luo, M.: General conformable fractional derivative and its physical interpretation. Calcolo 54, 903–917 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank reviewers for their observations, careful assessment, valuable suggestions and fruitful remarks which have improved the quality of initial version of the research paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nauman Raza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, N. Exact periodic and explicit solutions of the conformable time fractional Ginzburg Landau equation. Opt Quant Electron 50, 154 (2018). https://doi.org/10.1007/s11082-018-1420-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1420-5

Keywords

Navigation