Skip to main content
Log in

Graphene-based Mach–Zehnder nanophotonics interferometer working as a splitter/switch and as a multiplexer/demultiplexer

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We developed and are presenting a graphene-based nanophotonic Mach–Zehnder Interferometer (MZI), which can operate as a signal follower, switch and splitter and as a multiplexer/demultiplexer. Due to the excellent electrical/optical parameters inherent to the graphene, we showed that the device we are presenting can works in several different ways, which can not be supported by MZI based on conventional materials. It is worth mentioning that the operations of the device we have developed take into account the electrical/optical parameters of the graphene, which provide greater versatility and efficiency compared to the MZIs manufactured with conventional materials. In addition, these parameters can be controlled via, for example, gate voltage, so that many operations can be performed in parallel, which is also not possible through the use of conventional materials. Due to its manometric dimensions, this MZI can be integrated within photonic integrated circuits, so that we can use this device in dense wavelength division multiplexing optical communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adam, S., Hwang, E.H., Galitski, V., Das Sarma, S.: A self-consistent theory for graphene transport. Appl. Phys. Sci. 104(47), 18392–18397 (2007)

    Google Scholar 

  • Agrawal, G.P.: Nonlinear Fiber Optics, 2nd edn. Academic Press (1995). ISBN 0-12-045142-5

  • Ando, T.: Screening effect and impurity scattering in monolayer graphene. J. Phys. Soc. Jpn. 75, 074716 (2006)

    Article  ADS  Google Scholar 

  • Bao, Q., Loh, K.P.: Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6, 3677–3694 (2012)

    Article  Google Scholar 

  • Barnes, W.L.: Surface plasmon–polariton length scales: a route to sub-wavelength optics. J. Opt. A Pure Appl. Opt. 8, S87–S93 (2006)

    Article  ADS  Google Scholar 

  • Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  ADS  Google Scholar 

  • Cheng, Z., Tsang, H.K., Wang, X., Wong, C.Y., Chen, X., Xu, K, Shi, Z., Xu, J.B.: Polarization Dependent Loss and All-Optical Modulation in Graphene on Suspended Membrane Waveguides. Cornell University Library (2012). arXiv:1211.5946v1

  • Christensen, J., Manjavacas, A., Thongrattanasiri, S., Koppens, F.H.L., de Abajo, F.J.G.: Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6(1), 431–440 (2012)

    Article  Google Scholar 

  • de Ridder, R.M., Roelloffzen, C.G.H.: Interleavers. In: Venghaus, H. (ed.) Wavelength Filters for Fibre Optics. Springer Series in Optical Sciences, vol. 123, pp. 381–432 (2006). ISBN 3-540-31769-4

  • Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L., Hone, J.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)

    Article  ADS  Google Scholar 

  • Dwivedi, S., De Heyn, P., Absil, P., Van Campenhout, J., Bobaerts, W.: Coarse wavelength division multiplexer on silicon-on-insulator for 100 GbE. In: Group IV Photonics, IEEE 12th International Conference (2015). https://doi.org/10.1109/Group4.2015.7305928

  • Falkovsky, L.A., Pershoguba, S.S.: Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B 76, 153410 (2007)

    Article  ADS  Google Scholar 

  • Gan, C.H., Chu, H.S., Li, E.P.: Synthesis of highly confined surface plasmon modes with doped graphene sheets in the mid-infrared and terahertz frequencies. Phys. Rev. B 85, 125431–125439 (2012)

    Article  ADS  Google Scholar 

  • García de Abajo, F.J.: Graphene plasmonics: challenges and opportunities. ACS Phot. 1(3), 135–152 (2014)

    Article  Google Scholar 

  • He, S., Zhang, X., He, Y.: Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI. Opt. Express 21(25), 30664–30673 (2013)

    Article  ADS  Google Scholar 

  • Katsnelson, M.I., Geim, A.K.: Electron sacttering on microscopic corrugations in graphene. Phil. Trans. R. Soc. A 366, 195–204 (2007)

    Article  ADS  Google Scholar 

  • Kim, D.W., Barkai, A., Jones, R., Elek, N., Nguyen, H., Liu, A.: Silicon-on-insulator eight-channel optical multiplexer based on a cascade of asymmetric Mach–Zehnder interferometers. Opt. Lett. 33(5), 530–532 (2008)

    Article  ADS  Google Scholar 

  • Koppens, F.H.L., Chang, D.E., García de Abajo, F.J.: Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011)

    Article  ADS  Google Scholar 

  • Mikhailov, S.A., Ziegler, K.: New electromagnetic mode in graphene. Phys. Rev. Lett. 99, 016803 (2007)

    Article  ADS  Google Scholar 

  • Murray, W.A., Barnes, W.L.: Plasmonic materials. Adv. Mater. 19, 3771–3782 (2007)

    Article  Google Scholar 

  • Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    Article  ADS  Google Scholar 

  • Nanotubes and Nanosheets. CRC Press, Taylor and Francis Group (2005). ISBN: 13:978-1-4665-9810-2

  • Park, Ch-H, Giustino, F., Cohen, M.L., Louie, S.G.: Velocity renormalization and carrier lifetime in graphene from the electron–phonon interaction. Phys. Rev. Lett. 99, 086804 (2007)

    Article  ADS  Google Scholar 

  • Raj, A.K., Sundari, B.T.B.: Compact graphene field effect transistor modeling with quantum capacitance effects. ARPN J. Eng. Appl. Sci 11(2), 1347–1351 (2016)

    Google Scholar 

  • Recommendation ITU-T G.671: Series G: transmission systems and media digital systems and networks (2012)

  • Sámson, Z.L., Horak, P., MacDonald, K.F., Zheludev, N.I.: Femtosecond surface plasmon pulse propagation. Opt. Lett. 36(2), 250–252 (2011)

    Article  ADS  Google Scholar 

  • Thongrattanasiri, S., Manjavacas, A., García de Abajo, F.J.: Quantum finite-size effects in graphene plasmons. ACS Nano 6, 1766–1775 (2012)

    Article  Google Scholar 

  • Vakil, A., Engheta, N.: One-Atom-Thick IR Metamaterials and Transformation Optics Using Graphene. Cornell University Library (2011). arXiv:1101.3585v1

  • Wang, H., Taychatanapat, T., Hsu, A., Watanabe, K., Taniguchi, T., Jarillo-Herrero, P., Palacios, T.: BN/graphene/BN transistors for RF applications. IEEE Electron Device Lett. 32(9), 1209–1211 (2011)

    Article  ADS  Google Scholar 

  • Wang, B., Zhang, X., Yuan, X., Teng, J.: Optical coupling of surface plasmons between graphene sheets. Appl. Phys. Lett. 100, 131111 (2012)

    Article  ADS  Google Scholar 

  • Zan, R, Ramasse, Q.M., Jadil, R., Bangert, U.: Advances in Graphene Science. InTech. Chapter 1 (2013). ISBN 978-953-51-1182-5

  • Zhang, H., Virally, S., Bao, Q., Loh, K.P., Massar, S., Godbout, N., Kockaert, P.: Large Nonlinear Kerr Effect in Graphene (2012). arXiv:1203.5527v1

  • Zhu, X., Yan, W., Mortensen, N.A., Xiao, S.: Bends and splitters in graphene nanoribbon waveguides. Opt. Express 21(3), 3486–3491 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partly sponsored by the National Council for Scientific and Technological Development (CNPq). To Prof. Dr. Victor Dmitriev Alexandrovic, (UFPA) for calculations using the COMSOL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wirth Lima Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wirth Lima, A., Sombra, A.S.B. Graphene-based Mach–Zehnder nanophotonics interferometer working as a splitter/switch and as a multiplexer/demultiplexer. Opt Quant Electron 49, 388 (2017). https://doi.org/10.1007/s11082-017-1227-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1227-9

Keywords

Navigation