Skip to main content
Log in

Exact solutions for nonlinear fractional differential equations using exponential rational function method

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Exponential rational function method is a relatively new mechanism to get exact solutions of nonlinear fractional differential equations. In this paper, fractional derivatives in the sense of Jumarie’s modified Riemann–Liouville are defined. Fractional complex transform is used to convert fractional differential equations into ordinary differential equations. This method is more appropriate for solving different kind of nonlinear fractional differential equations emerging in mathematical physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aghdaei, M.F., Manafian, J.: Optical soliton wave solutions to the resonant Davey-Stewartson system. Opt. Quantum Electron. 48(8), 413–425 (2016)

    Article  Google Scholar 

  • Ahmad, J., Mohyud-Din, S.T.: Solving fractional vibrational problem using restarted fractional Adomian’s decomposition method. Life Sci. J. 10(4), 210–216 (2013)

    Google Scholar 

  • Ahmad, J., Mohyud-Din, S.T.: An efficient algorithm for some highly nonlinear fractional PDEs in mathematical physics. PloS ONE 9(12), e109127 (2014). doi:10.1371/journal.pone.0109127

    Article  ADS  Google Scholar 

  • Alzaidy, J.F.: The fractional sub-equation method and exact analytical solutions for some nonlinear fractional PDEs. Am. J. Math. Anal. 1(1), 14–19 (2013)

    Google Scholar 

  • Anil Sezer, S., Yildirim, A., Mohyud-Din, S.T.: He’s homotopy perturbation method for solving the fractional KdV-Burgers-Kuramoto equation. Int. J. Numer. Method Heat Fluid Flow 21(4), 448–458 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Bekir, A., Aksoy, E.: Application of the sub-equation method to some differential equations of time fractional order. J. Comput. Nonlinear Dyn. 10, 054503 (2015). doi:10.1115/1.4028826

    Article  Google Scholar 

  • Bekir, A., Güner, Ö.: Exact solutions of nonlinear fractional differential equations by (G’/G)-expansion method. Chin. Phys. B 22(11), 110202 (2013). doi:10.1088/1674-1056/22/11/110202

    Article  Google Scholar 

  • Bekir, A., Kaplan, M., Exponential rational function method for solving nonlinear equations arising in various physical models. Chin. J. Phys. 54(3), 365–370 (2016)

    Article  MathSciNet  Google Scholar 

  • Bekir, A., Güner, O., Cevikel, A.C.: The fractional complex transform and exp-function methods for fractional differential equations. Abstr. Appl. Anal. 2013, 426462 (2013a). doi:10.1155/2013/426462

    Article  MathSciNet  MATH  Google Scholar 

  • Bekir, A., Aksoy, E., Güner, Ö.: Optical soliton solutions of the long-short-wave interaction system. Nonlinear Opt. Phys. Mater. 22(2), 1350015 (2013b). doi:10.1142/S021886351350015X

    Article  Google Scholar 

  • Bekir, A., Aksoy, E., Güner, O.: A generalized fractional sub-equation method for nonlinear fractional differential equations. AIP Conf. Proc. 1611, 78–83 (2014)

    Article  ADS  Google Scholar 

  • Biswas, A., Bhrawy, A.H., Abdelkawy, M.A., et al.: Symbolic computation of some nonlinear fractional differential equations. Rom. J. Phys. 59, 433–442 (2014)

    Google Scholar 

  • Cui, M.: Compact finite difference method for the fractional diffusion equation. Comput. Phys. 228(20), 7792–7804 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gepreel, K.A.: The homotopy perturbation method applied to the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations. Appl. Math. Lett. 24(8), 1428–1434 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Ghaneai, H., Hosseini, M.M., Mohyud-Din, S.T.: Modified variational iteration method for solving a neutral functional-differential equation with proportional delays. Int. J. Numer. Method Heat Fluid Flow 22(8), 1086–1095 (2012)

    Article  MathSciNet  Google Scholar 

  • Guner, O.: Singular and non-topological soliton solutions for nonlinear fractional differential equations. Chin. Phys. B 24(10), 100201 (2015). doi:10.1088/1674-1056/24/10/100201

    Article  Google Scholar 

  • Güner, Ö., Bekir, A., Karaca, F.: Optical soliton solutions of nonlinear evolution equations using ansatz method. Int. J. Light Electron Opt. 127(1), 131–134 (2016)

    Article  Google Scholar 

  • He, J.H., Li, Z.B.: Converting fractional differential equations into partial differential equations. Therm. Sci. 16(2), 331–334 (2012)

    Article  Google Scholar 

  • Ibrahim, R.W.: Fractional complex transforms for fractional differential equations. Adv. Differ. Equ. 2012(1), 1–12 (2012)

    Article  MathSciNet  Google Scholar 

  • Jafari, H., et al.: Exact solutions of Boussinesq and KdV-mKdV equations by fractional sub-equation method. Rom. Rep. Phys. 65(4), 1119–1124 (2013)

    Google Scholar 

  • Jumarie, G.: Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results. Comput. Math Appl. 51(9), 1367–1376 (2006a)

    Article  MathSciNet  MATH  Google Scholar 

  • Jumarie, G.: Modified Riemann-Liouville derivative and fractional Taylor series ofnon differentiable functions further results. Comput. Math Appl. 51, 1367–1376 (2006b)

    Article  MathSciNet  MATH  Google Scholar 

  • Jumarie, G.: G. Table of some basic fractional calculus formulae derived from a modified Riemann–Liouvillie derivative for non-differentiable functions. Appl. Math. Lett. 22, 378–385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Z.B., He, J.H.: Fractional complex transform for fractional differential equations. Math. Comput. Appl. 15(5), 970–973 (2010)

    MathSciNet  MATH  Google Scholar 

  • Liu, W.J., Tian, B.: Symbolic computation on soliton solutions for variable-coefficient nonlinear Schrödinger equation in nonlinear optics. Opt. Quantum Electron. 43(11–15), 147–162 (2012)

    Article  Google Scholar 

  • Merdan, M., Gökdoğan, A., Yıldırım, A., Mohyud-Din, S.T.: Numerical simulation of fractional Fornberg-Whitham equation by differential transformation method. Abstr. Appl. Anal. 2012, 965367 (2012). doi:10.1155/2012/965367

    Article  MathSciNet  MATH  Google Scholar 

  • Merdan, M., Mohyud-Din, S.T.: A new method for time-fractionel coupled-KDV equations with modified Riemann-Liouville derivative. Stud. Nonlinear Sci. 2(2), 77–86 (2011)

    Google Scholar 

  • Miller, K.S., Ross, B.: An introduction to the fractional calculus and fractional differential equations. Wiley, New York (1993)

    MATH  Google Scholar 

  • Mohyud-Din, S.T., Yildirim, A., Usman, M.: Homotopy analysis method for fractional partial differential equations. Int. J. Phys. Sci. 6(1), 136–145 (2011)

    Google Scholar 

  • Mohyud-Din, S.T., et al.: Homotopy analysis method for solving the space and time fractional KdV equations. Int. J. Numer. Method Heat Fluid Flow 22(7), 928–941 (2012)

    Article  Google Scholar 

  • Podlubny, I.: Fractional differential equations. Journal of Mathematics in Science and Engineering, p. 198. Academic Press, San Diego (1999)

    Google Scholar 

  • Shakeel, M., Mohyud-Din, S.T.: A novel (G’/G)-expansion method and its application to the space-time fractional symmetric regularized long wave (SRLW) equation. Adv. Trends Math. 2, 1–16 (2015)

    Article  Google Scholar 

  • Sonmezoglu, A.: Exact solutions for some fractional differential equations. Adv. Math. Phys. 2015 (2015). doi:10.1155/2015/567842

  • Ul Hassan, Q.M., Mohyud-Din, S.T.: On an efficient technique to solve nonlinear fractional-order partial differential equations. Int. J. Nonlinear Sci. 19(1), 3–8 (2015)

    MathSciNet  Google Scholar 

  • Ul Hassan, Q.M., Mohyud-Din, S.T., Exp-function method using modified Riemann-Liouville derivative for Burger’s equations of fractional-order. Q Sci. Connect. 19 (2013). doi:10.5339/connect.2013.19

  • Wen, C., Zheng, B.: A new fractional sub-equation method for fractional partial differential equations. WSEAS Trans. Math. 12(5), 564–571 (2013)

    Google Scholar 

  • Xu, F.: Application of Exp-function method to symmetric regularized long wave (SRLW) equation. Phys. Lett. A 372(3), 252–257 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Yildirim, A., Mohyud-Din, S.T.: Analytical approach to space-and time-fractional burgers equations. Chin. Phys. Lett. 27(9), 090501 (2010). doi:10.1088/0256-307X/27/9/090501

    Article  Google Scholar 

  • Younis, M., Cheemaa, N., Mahmood, S.A., Rizvi, S.T.R.: On optical solitons: the chiral nonlinear Schrödinger equation with perturbation and Bohm potential. Opt. Quantum Electron. 48(12), 542 (2016). doi:10.1007/s11082-016-0809-2

    Article  Google Scholar 

  • Yusufoglu, E., Bekir, A.: A travelling wave solution to the Ostrovsky equation. Appl. Math. Comput. 186(1), 256–260 (2007)

    MathSciNet  MATH  Google Scholar 

  • Zayed, E.M.E.: A note on the modified simple equation method applied to Sharma-Tasso-Olver equation. Appl. Math. Comput. 218(7), 3962–3964 (2011)

    MathSciNet  MATH  Google Scholar 

  • Zhang, S., Zong, Q.-A., Liu, D., et al.: A generalized exp-function method for fractional riccati differential equations. Commun. Fract. Calc. 1, 48–51 (2010)

    Google Scholar 

  • Zheng, B.: (G’/G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. 58, 623–630 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Tauseef Mohyud-Din.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohyud-Din, S.T., Bibi, S. Exact solutions for nonlinear fractional differential equations using exponential rational function method. Opt Quant Electron 49, 64 (2017). https://doi.org/10.1007/s11082-017-0895-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-0895-9

Keywords

Navigation