Skip to main content
Log in

Symbolic computation on soliton solutions for variable-coefficient nonlinear Schrödinger equation in nonlinear optics

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Soliton interaction and control using the dispersion-decreasing fibers with potential applications to the design of high-speed optical devices and ultralarge capacity transmission systems are investigated based on solving the variable-coefficient nonlinear Schrödinger equation with symbolic computation. Via the Hirota method, analytic two- and three-soliton solutions for that model are obtained, with their relevant properties and features illustrated. Dispersion-decreasing fibers with different profiles are found to be able to control the soliton velocity. Additionally, through the asymptotic analysis for the two-soliton solutions, we point out that the interaction between two solitons is elastic. Finally, a new approach to controll the soliton interaction using the dispersion-decreasing fiber with the Gaussian profile is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal G.P.: Nonlinear Fiber Optics, 4th edn. Academic Press, San Diego (2007)

    Google Scholar 

  • Chen S.H., Liu H.P., Zhang S.W., Yi L.: Compression of Hermite–Gaussian pulses in an engineered optical fiber absorber with varying dispersion and nonlinearity. Phys. Lett. A 353, 493–496 (2006)

    Article  ADS  Google Scholar 

  • Gao Y.T., Tian B.: Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: variable-coefficient bilinear form, Bäcklund transformation, brightons and symbolic computation. Phys. Lett. A 366, 223–229 (2007)

    Article  ADS  MATH  Google Scholar 

  • Ganapathy R., Porsezian K., Hasegawa A., Serkin V.N.: Soliton interaction under soliton dispersion management. IEEE J. Quantum Electron. 44, 383–390 (2008)

    Article  ADS  Google Scholar 

  • Georges T., Favre F.: Modulation, filtering, and initial phase control of interacting solitons. J. Opt. Soc. Am. B 10, 1880–1889 (1993)

    Article  ADS  Google Scholar 

  • Han S.H., Park Q.H.: Effect of self-steepening on optical solitons in a continuous wave background. Phys. Rev. E 83, 066601-1–6 (2011)

    ADS  Google Scholar 

  • Hasegawa A., Tappert F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fiber, I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973a)

    Article  ADS  Google Scholar 

  • Hasegawa A., Tappert F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fiber, II. Normal dispersion. Appl. Phys. Lett. 23, 171–172 (1973b)

    Article  ADS  Google Scholar 

  • Hasegawa A., Matsumoto M.: Optical Solitons in Fibers. 3rd edn. Springer, Berlin (2003)

    Google Scholar 

  • Hirota R.: Exact solution of the KdV equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  ADS  MATH  Google Scholar 

  • Hirota R.: Exact envelope-soliton of a nonlinear wave equation. J. Math. Phys. 14, 805–814 (1973)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Inoue T., Sugahara H., Maruta A., Kodama Y.: Interactions between dispersion managed solitons in optical-time-division-multiplexed system. IEEE Photon. Technol. Lett. 12, 299–301 (2000)

    Article  ADS  Google Scholar 

  • Joshi N.: Painlevé property of general variable-coefficient versions of the Kortewegde Vries and nonlinear Schrödinger equations. Phys. Lett. A 125, 456–460 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  • Kanna T., Tsoy E.N., Akhmediev N.: On the solution of multicomponent nonlinear Schrödinger equations. Phys. Lett. A 330, 224–229 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kivshar Y.S., Agrawal G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, San Diego (2003)

    Google Scholar 

  • Kodama Y., Nozaki L.: Soliton interaction in optical fibres. Opt. Lett. 12, 1038–1040 (1987)

    Article  ADS  Google Scholar 

  • Komarova A., Komarov K., Leblond H., Sanchez F.: Spectral management of solitons interaction and generation regimes of fiber laser. ICTON 1, 217–220 (2007)

    Google Scholar 

  • Kubota H., Nakazawa M.: Soliton transmission control in time and frequency domains. IEEE J. Quantum Electron. 29, 2189–2197 (1993)

    Article  ADS  Google Scholar 

  • Kurokawa K., Kubota H., Nakazawa M.: Femtosecond soliton interactions in a distributed erbium-doped fiber amplifier. IEEE J. Quantum Electron. 30, 2220–2226 (1994)

    Article  ADS  Google Scholar 

  • Lakoba T.I., Agrawal G.P.: Optimization of the average-dispersion range for longhaul dispersion-managed soliton systems. IEEE J. Lightw. Technol. 18, 1504–1512 (2000)

    Article  ADS  Google Scholar 

  • Li B., Chen Y.: On exact solutions of the nonlinear Schrödinger equations in optical fiber. Chaos Solitons Fractals 21, 241–247 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Luo H.G., Zhao D., He X.G.: Exactly controllable transmission of nonautonomous optical solitons. Phys. Rev. A 79, 063802-1–4 (2009)

    ADS  Google Scholar 

  • Mollenauer L.F., Stolen R.H., Gordon J.P.: Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980)

    Article  ADS  Google Scholar 

  • Morita I., Tanaka K., Edagawa N., Suzuki M.: 40 Gb/s single-channel soliton transmission over transoceanic distances by reducing Gordon–Haus timing jitter and soliton–soliton interaction. IEEE J. Lightw. Technol. 17, 2506–2511 (1999)

    Article  ADS  Google Scholar 

  • Pinto A.N., Agrawal G.P., da Rocha J.F.: Effect of soliton interaction on timing jitter in communication systems. IEEE J. Lightw. Technol. 16, 515–519 (1998)

    Article  ADS  Google Scholar 

  • Ponomarenko S.A., Agrawal G.P.: Optical similaritons in nonlinear waveguides. Opt. Lett. 32, 1659–1661 (2007)

    Article  ADS  Google Scholar 

  • Porsezian K., Ganapathy R., Hasegawa A., Serkin V.N.: Nonautonomous soliton dispersion management. IEEE J. Quantum Electron. 45, 1577–1583 (2009)

    Article  ADS  Google Scholar 

  • Pusch A., Hamm J.M., Hess O.: Femtosecond nanometer-sized optical solitons. Phys. Rev. A 84, 023827-1–5 (2011)

    Article  ADS  Google Scholar 

  • Serkin V.N., Hasegawa A.: Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett. 85, 4502–4505 (2000)

    Article  ADS  Google Scholar 

  • Serkin V.N., Hasegawa A.: Exactly integrable nonlinear Schrödinger equation models with varying dispersion, nonlinearity and gain: application for soliton dispersion. IEEE J. Sel. Top. Quantum Electron. 8, 418–431 (2002)

    Article  Google Scholar 

  • Serkin V.N., Hasegawa A., Belyaeva T.L.: Nonautonomous solitons in external potentials. Phys. Rev. Lett. 98, 074102-1–4 (2007)

    Article  ADS  Google Scholar 

  • Sun Z.Y., Gao Y.T., Yu X., Liu W.J., Liu Y.: Bound vector solitons and soliton complexes for the coupled nonlinear Schrödinger equations. Phys. Rev. E 80, 066608 (2009)

    Article  ADS  Google Scholar 

  • Sun Z.Y., Gao Y.T., Yu X., Liu Y.: Formation of vortices in a combined pressure-driven electro-osmotic flow through the insulated sharp tips under finite Debye length effects. Colloid Surf. A 366, 1 (2010)

    Article  Google Scholar 

  • Tian B., Gao Y.T.: Symbolic-computation study of the perturbed nonlinear Schrödinger model in inhomogeneous optical fibers. Phys. Lett. A 342, 228–236 (2005)

    Article  ADS  MATH  Google Scholar 

  • Turitsyn S.K., Smyth N.F., Turitsyna E.G.: Solitary waves in nonlinear dispersive systems with zero average dispersion. Phys. Rev. E 58, R44–R47 (1998)

    Article  ADS  Google Scholar 

  • Wabnitz S., Kodama Y., Aceves A.B.: Control of optical soliton interactions. Opt. Fiber Technol. 1, 187–217 (1995)

    Article  ADS  Google Scholar 

  • Wai P.K., Cao W.H.: Ultrashort soliton generation through higher-order soliton compression in a nonlinear optical loop mirror constructed from dispersion-decreasing fiber. J. Opt. Soc. Am. B 20, 1346–1355 (2003)

    Article  ADS  Google Scholar 

  • Wang L., Gao Y.T., Gai X.L., Sun Z.Y.: Inelastic interactions and double Wronskian solutions for the Whitham-Broer-Kaup model in shallow water. Phys. Scr. 80, 065017 (2009)

    Article  ADS  Google Scholar 

  • Wang L., Gao Y.T., Qi F.H.: Multi-solitonic solutions for the variable-coefficient variant Boussinesq model of the nonlinear water waves. J. Math. Anal. Appl. 372, 110 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang L.Y., Li L., Li Z.H., Zhou G.S., Mihalache D.: Generation, compression and propagation of pulse trains in the nonlinear Schrödinger equation with distributed coefficients. Phys. Rev. E 72, 036614- 1–7 (2005)

    ADS  Google Scholar 

  • Wu L., Zhang J.F., Li L., Finot C., Porsezian K.: Similariton interactions in nonlinear graded-index waveguide amplifiers. Phys. Rev. A 78, 053807-1–7 (2008)

    ADS  Google Scholar 

  • Xie C.J., Karlsson M., Andrekson P.A., Sunnerud H., Li J.: Influences of polarization-mode dispersion on soliton transmission systems. J. Sel. Top. Quantum Electron. 8, 575–590 (2002)

    Article  Google Scholar 

  • Yu X., Gao Y.T., Sun Z.Y., Liu Y.: N-soliton solutions, Backlund transformation and Lax pair for a generalized variable-coefficient fifth-order Korteweg-de Vries equation. Physica Scripta 81, 045402 (2010)

    Article  ADS  Google Scholar 

  • Yu X., Gao Y.T., Sun Z.Y., Liu Y.: Solitonic propagation and interaction for a generalized variable coefficient forced Korteweg-de Vries equation in fluids. Phys. Rev. E 83, 056601 (2011)

    Article  ADS  Google Scholar 

  • Zhang J.F., Dai C.Q., Yang Q., Zhu J.M.: Variable-coefficient F-expansion method and its application to nonlinear Schrödinger equation. Opt. Commun. 252, 408–421 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, WJ., Tian, B. Symbolic computation on soliton solutions for variable-coefficient nonlinear Schrödinger equation in nonlinear optics. Opt Quant Electron 43, 147–162 (2012). https://doi.org/10.1007/s11082-011-9517-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-011-9517-0

Keywords

Navigation