Skip to main content
Log in

Electric conductivity of nanocluster PbTe structures with controlled topology: Manifestation of macroscopic quantum effects

  • Proceedings of the XII International Readings on Quantum Optics (Moscow–Troitsk, August 11–16, 2015)
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Methods of laser modification allow us to observe macroscopic quantum phenomena in nanostructured (cluster) materials. The laser synthesis of nanoparticles/nanoclusters with different topologies in semiconductor PbTe samples is performed via direct laser modification of thin films under the action of continuous laser radiation with a wavelength of 1.06 μm and a power density of ~105 W/cm2. Nanoparticles with bimodal distribution in lateral dimensions are obtained on the surfaces of the samples. The electrophysical properties of such structures can be controlled as desired by modifying their topology. Variations in electric properties depending on the particle location density are demonstrated. The results are interpreted based on the existence of quantum coherent processes with tunneling transitions and hopping conductivity. This approach is promising for the fabrication of elements and devices in optoelectronics and photonics based on new physical principles, and of different hybrid optoelectrical schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dushenko, S., Koike, M., Ando, Y., Shinjo, T., Myronov, M., and Shiraishi, M., Phys. Rev. Lett., 2015, vol. 114, p. 196602.

    Article  ADS  Google Scholar 

  2. Röntynen, J. and Ojanen, T., Phys. Rev. Lett., 2015, vol. 114, p. 236803.

    Article  ADS  Google Scholar 

  3. Kim, Y., Zhang, J., Rossi, E., and Lutchyn, R.M., Phys. Rev. Lett., 2015, vol. 114, p. 236804.

    Article  ADS  Google Scholar 

  4. Yen, F. and Gao, T., J. Phys. Chem. Lett., 2015, vol. 6, no. 14, p. 2822. doi 10.1021/acsjpclett.5b00797

    Article  Google Scholar 

  5. Drovosekov, A.B., Kreines, N.M., Savitskii, A.O., et al., J. Exp. Theor. Phys., 2015, vol. 120, no. 6, p. 1041.

    Article  ADS  Google Scholar 

  6. Tarasov, M., Edel’man, V., Mahashabde, S., and Kuzmin, L., J. Exp. Theor. Phys., 2014, vol. 119, no. 1, p. 107.

    Article  ADS  Google Scholar 

  7. Suslov, I.M., J. Exp. Theor. Phys., 2014, vol. 118, no. 6, p. 909.

    Article  ADS  Google Scholar 

  8. Landau, L.D., and Lifshits, E.M., Teoreticheskaya fizika (Theoretical Physics), vol. 8 Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media), Moscow: Nauka, 1987.

    MATH  Google Scholar 

  9. Abrikosov, A.A., Osnovy teorii materialov (Foundations of Materials Theory), Fal’kovskii, L.A., Ed., Moscow Fizmatlit, 2010.

  10. Arakelyan, S.M., Kucherik, A.O., Prokoshev, V.G., Rau, V.G., and Sergeev, A.G., Vvedenie v femtonanofotoniku: fundamental’nye osnovy i lazernye metody upravlyaemogo polucheniya i diagnostiki nanostrukturirovannykh materialov (Introduction to Femtonanophotonics: Foundations and Laser Methods for Controlled Production and Diagnostics of Nanostructured Materials), Arakelyan, S.M., Ed., Moscow Logos, 2015.

  11. Uvarov, N.F., Kompozitsionnye tverdye elektrolity (Composite Solid Electrolytes), Novosibirsk Sib. Otd. Ross. Akad. Nauk, 2008.

    Google Scholar 

  12. Astapenko, V.A., Movnin, S.M., and Protasov, Yu.Yu., Fotoelektronika (Photoelectronics), Moscow: Yanus-K, 2011, part 2.

    Google Scholar 

  13. Bogolyubov, N.N., Izbrannye trudy po statisticheskoi fizike (Selected Works on Statistical Physics), Moscow Mosk. Gos. Univ., 1979

    Google Scholar 

  14. Bogolyubov, N.N., and Sadovnikov, B.I., Nekotorye voprosy statisticheskoi mekhaniki (Some Problems of Statistical Mechanics), Moscow Vysshaya Shkola, 1975.

    Google Scholar 

  15. Voronov, V.K., Podoplelov, A.V., and Sagdeev, R.Z., Fizika na perelome tysyacheletii: Fizicheskie osnovy nanotekhnologii (Physics on the Edge of Millennium. Physical Foundations of Nanotechnologies), Moscow Librokom, 2011.

    Google Scholar 

  16. Dragunov, V.P., Neizvestnyi, I.G., and Gridchin, V.A., Osnovy nanoelektroniki (Foundations of Nanoelectronics), Moscow Logos, 2006.

    Google Scholar 

  17. Kvasnikov, I.A., Vvedenie v teoriyu elektroprovodimosti i sverkhprovodimosti (Introduction to the Theory of Electrical Conductivity and Superconductivity), Moscow Librokom, 2010.

    Google Scholar 

  18. Antipov, A.A., Arakelyan, S.M., Emel’yanov, V.I., et al., Quantum Electron., 2011, vol. 41, no. 8, p. 735.

    Article  ADS  Google Scholar 

  19. Antipov, A.A., Arakelyan, S.M., Kutrovskaya, S.V., and Kucherik, A.O., Tech. Phys. Lett., 2014, vol. 40, no. 6, p. 529.

    Article  ADS  Google Scholar 

  20. Adamov, D.Yu., Adamov, Yu.F., Mokerov, V.G., and Shcheleva I.M., J. Commun. Technol. Electron., 1997, vol. 6, no. 3, p. 248.

    Google Scholar 

  21. Emel’yanov, V.I., Quantum Electron., 2011, vol. 41, no. 8, p. 738.

    Article  ADS  Google Scholar 

  22. Antipov, A.A., Arakelyan, S.M., Emel’yanov, V.I., et al., Quantum Electron., 2011, vol. 41, no. 5, p. 441.

    Article  ADS  Google Scholar 

  23. Arakelian, S.M., Bukharov, D.N., Emel’yanov, V.I., et al., Phys. Proc., 2014, vol. 56, p. 1115.

    Article  ADS  Google Scholar 

  24. Antipov, A.A., Arakelyan, S.M., Vartanyan, T.A., et al., Opt. Spectrosc., 2015, vol. 119, no. 1, p. 119.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Arakelian.

Additional information

Original Russian Text © A.A. Antipov, S.M. Arakelian, S.V. Kutrovskaya, A.O. Kucherik, D.S. Nogtev, A.V. Osipov, V.I. Emel’yanov, S.P. Zimin, 2016, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2016, Vol. 80, No. 7, pp. 896–906.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antipov, A.A., Arakelian, S.M., Kutrovskaya, S.V. et al. Electric conductivity of nanocluster PbTe structures with controlled topology: Manifestation of macroscopic quantum effects. Bull. Russ. Acad. Sci. Phys. 80, 818–827 (2016). https://doi.org/10.3103/S1062873816070042

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873816070042

Navigation