Skip to main content
Log in

Generation of needle of transversely polarized beam using complex spiral phase mask

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The intensity distribution in the focal region for the tight focusing of needle of azimuthally polarized beam with complex-spiral phase mask is studied on the basis of the vector diffraction theory. Here we report a new method that generates a needle of transversely polarized light beam with sub diffraction beam size (0.442 \(\uplambda \)) that propagates without divergence over a long distance (of about 12.6 \(\uplambda \)) in free space (NA \(=\) 0.95). The authors also expect such a light needle of transversely polarized beam may find its application when using optical materials or instruments responsive to the transversal field only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Cao, J., Chen, Q., Guo, H.: Creation of a controllable three dimensional optical chain by \(\text{ TEM }_{01}\) mode radially polarized Laguerre–Gaussian beam. Optik 124, 2033–2036 (2013)

    Article  ADS  Google Scholar 

  • Guo, H., Weng, X., Dong, X., Sui, G., Gao, X., Zhuang, S.: Three dimensional optical cage formed by \(\text{ TEM }_{01}\) mode radially polarized Laguerre–Gaussian beam. J. Opt. 40, 206–212 (2011)

    Article  Google Scholar 

  • Hao, X., Kuang, C., Wang, T., Liu, X.: Phase encoding for sharper focus of the azimuthally polarized beam. Opt. Lett. 35, 3928–3930 (2010)

    Article  Google Scholar 

  • Khonina, S.N., Golub, I.: Enlightening darkness to diffraction limit and beyond: comparison and optimization of different polarizations for dark spot generation. J. Opt. Soc. Am. A 29, 1470–1474 (2012)

    Article  Google Scholar 

  • Kozawa, Y., Sato, S.: Focusing property of a double-ring-shaped radially polarized beam. Opt. Lett. 31, 820–822 (2006)

    Article  ADS  Google Scholar 

  • Lalithambigai, K., Suresh, P., Ravi, V., Prabakaran, K., Jaroszewicz, Z., Rajesh, K.B., Anbarasan, P.M., Pillai, T.V.S.: Generation of sub wavelength super-long dark channel using high NA lens axicon. Opt. Lett. 37, 999–1001 (2012)

  • Liu, X., Liu, L., Liu, D., Bai, L.L.: Design and application of three-zone annular filters. Optik 117, 453–461 (2006)

    Article  ADS  Google Scholar 

  • Prabakaran, K., Rajesh, K.B., Pillai, T.V.S., Chandrasekaran, R., Jaroszewicz, Z.: Focal shift in radially polarized beam with high NA lens axicon by using radial cosine phase wavefront. Opt. Quantum Electron. 45, 563–570 (2013)

    Article  Google Scholar 

  • Rajesh, K.B., Jaroszewicz, Z., Anbarasan, P.M.: Improvement of lens axicon’s performance for longitudinally polarized beam generation by adding a dedicated phase transmittance. Opt. Express 18, 26799–26805 (2010)

    Article  ADS  Google Scholar 

  • Ravi, V., Suresh, P., Rajesh, K.B., Jaroszewicz, Z., Anbarasan, P.M., Pillai, T.V.S.: Generation of sub wavelength longitudinal magnetic probe using high numerical aperture lens axicon and binary phase plate. J. Opt. 14, 055704 (2012)

    Article  ADS  Google Scholar 

  • Richards, B., Wolf, E.: Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. A Math. Phys. Sci. 253, 358–379 (1959)

  • Sales, T.R.M., Morris, G.M.: Diffractive superresolution elements. J. Opt. Soc. Am. A 14, 1637–1646 (1997)

    Article  ADS  Google Scholar 

  • Suresh, P., Mariyal, C., Rajesh, K.B., Pillai, T.V.S., Jaroszewicz, Z.: Generation of a strong uniform transversely polarized nondiffracting beam using a high-numerical-aperture lens axicon with a binary phase mask. Appl. Opt. 52, 849–853 (2013)

    Article  Google Scholar 

  • Tian, B., Pu, J.: Tight focusing of a double-ring-shaped, azimuthally polarized beam. Opt. Lett. 36, 2014–2016 (2011)

    Article  ADS  Google Scholar 

  • Tovar, A.A.: Production and propagation of cylindrically polarized Laguerre–Gaussian laser beams. J. Opt. Soc. Am. A 15, 2705–2711 (1998)

    Article  ADS  Google Scholar 

  • Wang, H., Shi, L., Lukyanchuk, B., Sheppard, C., Chong, C.T.: Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat. Photon. 2, 501–505 (2008)

    Article  Google Scholar 

  • Youngworth, K.S., Brown, T.G.: Focusing of high numerical aperture cylindrical vector beams. Opt. Express 7, 77–87 (2000)

    Article  ADS  Google Scholar 

  • Yuan, G.H., Wei, S.B., Yuan, X.-C.: Nondiffracting transversally polarized beam. Opt. Lett. 36, 3479–3481 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

One of the authors K. Lalithambigai expresses her sincere thanks to UGC-Basic Scientific Research (BSR), New Delhi, India (UGC Letter No. 11-142/2008(BSR)) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Lalithambigai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalithambigai, K., Anbarasan, P.M. & Rajesh, K.B. Generation of needle of transversely polarized beam using complex spiral phase mask. Opt Quant Electron 47, 1027–1033 (2015). https://doi.org/10.1007/s11082-014-9958-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-9958-3

Keywords

Navigation