Skip to main content
Log in

B-CALM: An open-source GPU-based 3D-FDTD with multi-pole dispersion for plasmonics

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Numerical calculations with finite-difference time-domain (FDTD) on metallic nanostructures in a broad optical spectrum require an accurate approximation of the permittivity of dispersive materials. In this paper, we present the algorithms behind B-CALM (Belgium-California Light Machine), an open-source 3D-FDTD solver operating on Graphical Processing Units with multi-pole dispersion models. Our modified architecture shows a reduction in computing times for multi-pole dispersion models. We benchmark B-CALM by computing the absorption efficiency of a metallic nanosphere on a broad spectral range with a six-poles Drude-Lorentz model and compare it with Mie theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Gondarenko A., Lipson M.: Low modal volume dipole-like dielectric slab resonator. Opt. Express 16(22), 17689–17694 (2008)

    Article  ADS  Google Scholar 

  • Ishimaru A.: Wave Propagation and Scattering in Random Media. Wiley-IEEE Press, New York, NY (1999)

    Google Scholar 

  • Jensen J.S., Sigmund O.: Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide. JOSA B 22(6), 1191–1198 (2005)

    Article  ADS  Google Scholar 

  • Micikevicius, P.: In: Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units, pp. 79–84. ACM (2009)

  • Nvidia, C.: C Programming Guide v3.2. Nvidia Corp (2010)

  • Oskooi A.F., Roundy D., Ibanescu M., Bermel P., Joannopoulos J.D., Johnson S.G.: MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181(3), 687–702 (2010). doi:10.1016/j.cpc.2009.11.008

    Article  ADS  MATH  Google Scholar 

  • Palik E.D., Ghosh G.: Handbook of Optical Constants of Solids. Academic press, New York, NY (1998)

    Google Scholar 

  • Rakic A.D., Djurišic A.B., Elazar J.M., Majewski M.L.: Optical properties of metallic films for vertical-cavity opto- electronic devices. Applied Optics 37(22), 5271–5283 (1998)

    Article  ADS  Google Scholar 

  • Taflove A., Hagness S.C. et al.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Norwood, MA (1995)

    MATH  Google Scholar 

  • Zunoubi M.R.: Analysis of 3-dimensional electromagnetic fields in dispersive media using CUDA. Prog. Electromagn. Res. 16, 185–196 (2010)

    Google Scholar 

  • Zunoubi M.R., Payne J., Roach W.P.: CUDA implementation of TEz-FDTD solution of Maxwell’s equations in dispersive media. Antennas Wirel. Propag. Lett. IEEE 9, 756–759 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Wahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahl, P., Ly-Gagnon, DS., Debaes, C. et al. B-CALM: An open-source GPU-based 3D-FDTD with multi-pole dispersion for plasmonics. Opt Quant Electron 44, 285–290 (2012). https://doi.org/10.1007/s11082-012-9558-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-012-9558-z

Keywords

Navigation