Skip to main content
Log in

GPU-acceleration of waveform relaxation methods for large differential systems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

It is the purpose of this paper to provide an acceleration of waveform relaxation (WR) methods for the numerical solution of large systems of ordinary differential equations. The introduced technique is based on the employ of graphics processing units (GPUs) in order to speed-up the numerical integration process. A CUDA solver based on WR-Picard, WR-Jacobi and red-black WR-Gauss-Seidel iterations is presented and some numerical experiments realized on a multi-GPU machine are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burrage, K.: Parallel and sequential methods for ordinary differential equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (1995)

    Google Scholar 

  2. Burrage, K., Dyke, C., Pohl, B.: On the performance of parallel waveform relaxations for differential systems. Appl. Numer. Math. 20(1-2), 39–55 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burrage, K., Jackiewicz, Z., Norsett, S.P., Renaut, R.A.: Preconditioning waveform relaxation iterations for differential systems. BIT 36(1), 54–76 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burrage, K., Sand, J.: A Jacobi Waveform Relaxation Method for ODEs. SIAM J. Sci. Comput. 20(2), 534–552 (1998)

    Article  MathSciNet  Google Scholar 

  5. Capobianco, G., Cardone, A.: A parallel algorithm for large systems of Volterra integral equations of Abel type. J. Comput. Appl. Math. 220, 749–758 (2008). doi:10.1016/j.cam.2008.05.026

    Article  MathSciNet  MATH  Google Scholar 

  6. Capobianco, G., Conte, D.: An efficient and fast parallel method for Volterra integral equations of Abel type. J. Comput. Appl. Math. 189/1–2, 481–493 (2006). doi:10.1016/j.cam.2005.03.056

    Article  MathSciNet  Google Scholar 

  7. Capobianco, G., Conte, D., Del Prete, I.: High performance numerical methods for Volterra equations with weakly singular kernels. J. Comput. Appl. Math. 228, 571–579 (2009). doi:10.1016/j.cam.2008.03.027

    Article  MathSciNet  MATH  Google Scholar 

  8. Cardone, A., Messina, E., Russo, E.: A fast iterative method for discretized Volterra-Fredholm integral equations. J. Comput. Appl. Math 189, 568–579 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cardone, A., Messina, E., Vecchio, A.: An adaptive method for Volterra-Fredholm integral equations on the half line. J. Comput. Appl. Math. 228 (2), 538–547 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Conte, D., D’Ambrosio, R., Jackiewicz, Z.: Two-step Runge-Kutta methods with quadratic stability functions. J. Sci. Comput. 44(2), 191–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Conte, D., D’Ambrosio, R., Jackiewicz, Z., Paternoster, B.: A pratical approach for the derivation of algebraically stable two-step Runge-Kutta methods. Math. Model. Anal. 17(1), 65–77 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Conte, D., D’Ambrosio, R., Jackiewicz, Z., Paternoster, B.: Numerical search for algebrically stable two-step continuous Runge-Kutta methods. J. Comput. Appl. Math. 239, 304–321 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Conte, D., D’Ambrosio, R., Paternoster, B.: Two-step diagonally-implicit collocation based methods for Volterra Integral Equations. Appl. Numer. Math. 62 (10), 1312–1324 (2012). doi:10.1016/j.apnum.2012.06.007

    Article  MathSciNet  MATH  Google Scholar 

  14. Conte, D., Jackiewicz, Z., Paternoster, B.: Two-step almost collocation methods for Volterra integral equations. Appl. Math. Comp. 204, 839–853 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Conte, D., Paternoster, B.: Multistep collocation methods for Volterra Integral Equations. Appl. Numer. Math. 59, 1721–1736 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Courvoisier, Y., Gander, M.J.: Optimization of Schwarz waveform relaxation over short time windows. Numerical Algorithms 64(2), 221–243 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Crisci, M.R., Paternoster, B., Russo, E.: Fully parallel Runge-Kutta-Nyström methods for ODEs with oscillating solutions. Appl. Numer. Math. 11(1–3), 143–158 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. D’Ambrosio, R., Ferro, M., Jackiewicz, Z., Paternoster, B.: Two-step almost collocation methods for ordinary differential equations. Numer. Algorithms 53(2-3), 195–217 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. D’Ambrosio, R., Jackiewicz, Z.: Continuous Two-Step Runge-Kutta Methods for Ordinary Differential Equations. Numer. Algorithms 54(2), 169–193 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. D’Ambrosio, R., Jackiewicz, Z.: Construction and implementation of highly stable two-step continuous methods for stiff differential systems. Math. Comput. Simul. 81(9), 1707–1728 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. D’Ambrosio, R., Paternoster, B.: Two-step modified collocation methods with structured coefficient matrices for ordinary differential equations. Appl. Numer. Math. 62(10), 1325–1334 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Davison, E.J.: An Algorithm for the Computer Simulation of Very Large Dynamic Systems. Automatica 9, 665–675 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  23. Enright, W.: On the efficient and reliable numerical solution of large linear systems of O.D.E.’s. IEEE Trans. Autom. Control AC–24(6), 905–908 (1979)

    Article  MathSciNet  Google Scholar 

  24. Everstine: Numerical Solution of PDE, gwu.geverstine.com/pdenum.pdf (2010)

  25. http://gpgpu.org/category/research

  26. http://gpucomputing.net/

  27. Hairer, E., Norsett, S.P., Wanner, G.: Solving ordinary differential equations. I. Nonstiff problems. Second edition. Springer Series in Computational Mathematics, 8. Springer-Verlag, Berlin (1993)

    Google Scholar 

  28. Hairer, E., Wanner, G.: Solving ordinary differential equations. II. Stiff and differential-algebraic problems. Second revised edition, paperback. Springer Series in Computational Mathematics, 14. Springer-Verlag, Berlin (2010)

    Google Scholar 

  29. Jackson, K.R., Norsett, S.P.: The Potential for Parallelism in Runge-Kutta Methods. Part 1: RK Formulas in Standard Form. SIAM J. Numer. Anal. 32, 49–82 (1990)

    Article  MathSciNet  Google Scholar 

  30. Janssen, J.: Acceleration of waveform relaxation methods for linear ordinary and partial differential equations, PhD-thesis. Katholieke Universiteit Leuven, Belgium (1997)

    Google Scholar 

  31. Lelarasmee, E.: The Waveform Relaxation Method for the Time-Domain Analysis of Large-Scale Nonlinear Systems, Ph.D. thesis Department of Electrical Engineering and Computer Science. University of California, Berkeley (1982)

    Google Scholar 

  32. Leimkuhler, B.: Estimating Waveform Relaxation Convergence. SIAM J. Sci. Comput. 14, 872–889 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Leimkuhler, B., Ruehli, A.: Rapid convergence of waveform relaxation. Appl. Numer. Math. 11(1–3), 211–224 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lopez, L.: Methods based on boundary value techniques for solving parabolic equations on parallel computers. Parallel Comput. 19(9), 979–991 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lopez, L., Politi, T.: Parallel methods in the numerical treatment of population dynamic models. Parallel Comput. 18(7), 767–777 (1992)

    Article  MATH  Google Scholar 

  36. Lopez, L., Politi, T.: Tridiagonal splittings in the conditioning and parallel solution of banded linear systems. Linear Algebra Appl. 251, 249–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lopez, L., Trigiante, D.: A finite difference scheme for a stiff problem arising in the numerical solution of a population dynamic model with spatial diffusion. Nonlinear Anal. 9(1), 1–12 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. Miekkala, U., Nevanlinna, O.: Convergence of dynamic iterations for initial value problems. SIAM J. Sci. Stat. Comp. 8, 459–482 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  39. Miekkala, U., Nevanlinna, O.: Iterative Solution of systems of linear differential equations. Acta Numerica 5, 259–307 (1996)

    Article  MathSciNet  Google Scholar 

  40. NVIDIA Corporation: NVIDIA CUDA compute unified device architecture programming guide, http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf (2012)

  41. Ortega, J.: Introduction to Parallel and Vector Solution of Linear Systems Springer (1988)

  42. Quarteroni, A., Valli, A.: Numerical approximation of partial differential equations. Springer Series in Computational Mathematics, 23. Springer-Verlag, Berlin (1994)

    Google Scholar 

  43. Reichelt, M., White, J., Allen, J.: Waveform relaxation for transient simulation of two-dimensional MOS devices. In: Proceedings of the IEEE International Conference on Comparative-Aided Design (1989)

  44. Sanders, J., Kandrot, E.: CUDA by example, An Introduction to General-Purpose GPU Programming, NVIDIA Corporation. Addison-Wesley (2011)

  45. Simek, V., Dvorak, R., Zboril, F., Kunovsky, J.: Towards Accelerated Computation of Atmospheric Equations Using CUDA, UKSIM ’09 11th International Conference on Computer Modelling and Simulation, pp. 449–454 (2009)

  46. Spiteri, R.J., Dean, R.C.: On the Performance of an Implicit-Explicit Runge-Kutta Method in Models of Cardiac Electrical Activity. IEEE Trans. Biomed. Eng. 55(5), 1488–1495 (2008)

    Article  Google Scholar 

  47. van der Houwen, P.J., Sommeijer, B.P.: CWI contributions to the development of parallel Runge-Kutta methods. Appl. Numer. Math. 22(1-3), 327–344 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  48. Van Lent, J., Vandewalle, S.: Multigrid waveform relaxation for anisotropic partial differential equations. Numer. Algorithms 31(1-4), 361–380 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang, H., Jiang, Y.-L.: A note on the H1-convergence of the overlapping Schwarz waveform relaxation method for the heat equation. Numer. Algorithms 66 (2), 299–307 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dajana Conte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conte, D., D’Ambrosio, R. & Paternoster, B. GPU-acceleration of waveform relaxation methods for large differential systems. Numer Algor 71, 293–310 (2016). https://doi.org/10.1007/s11075-015-9993-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-9993-6

Keywords

Navigation