Skip to main content
Log in

Optimization of Schwarz waveform relaxation over short time windows

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Schwarz waveform relaxation algorithms (SWR) are naturally parallel solvers for evolution partial differential equations. They are based on a decomposition of the spatial domain into subdomains, and a partition of the time interval of interest into time windows. On each time window, an iteration, during which subproblems are solved in space-time subdomains, is then used to obtain better and better approximations of the overall solution. The information exchange between subdomains in space-time is performed through classical or optimized transmission conditions (TCs). We analyze in this paper the optimization problem when the time windows are short. We use as our model problem the optimized SWR algorithm with Robin TCs applied to the heat equation. After a general convergence analysis using energy estimates, we prove that in one spatial dimension, the optimized Robin parameter scales like the inverse of the length of the time window, which is fundamentally different from the known scaling on general bounded time windows, which is like the inverse of the square root of the time window length. We illustrate our analysis with a numerical experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellen, A., Zennaro, M.: The use of Runge-Kutta formulae in waveform relaxation methods. Appl. Numer. Math. 11(1–3), 95–114 (1993). Parallel methods for ordinary differential equations (Grado 1991). MR1197152 (94c:65090)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bennequin, D., Gander, M.J., Halpern, L.: A homographic best approximation problem with application to optimized Schwarz waveform relaxation. Math. Comput. 78(265), 185–232 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bjørhus, M.: A note on the convergence of discretized dynamic iteration. BIT Numerical Mathematics 35(2), 291–296 (1995). MR1429020 (97i:65106)

    Article  MathSciNet  Google Scholar 

  4. Burrage, K.: Parallel and Sequential Methods for Ordinary Differential Equations. Numerical Mathematics and Scientific Computation. The Clarendon Press Oxford University Press, New York (1995). Oxford Science Publications. MR1367504 (97f:65021)

    Google Scholar 

  5. Colombo, S., Lavoine, J.: Transformations de Laplace et de Mellin. Gauthier-Villars Éditeur, Paris, Formulaires. Mode d’utilisation, Mémorial des Sciences Mathématiques, Fasc. CLXIX. MR0352885 (50 #5371) 1972

  6. Daoud, D.S., Gander, M.J.: Overlapping Schwarz waveform relaxation for advection reaction diffusion problems. Bol. Soc. Esp. Mat. Appl. 46, 75–90 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Després B.: Méthodes de décomposition de domaine pour les problèmes de propagation d’ondes en régime harmonique. Le théorème de Borg pour l’équation de Hill vectorielle, Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt, 1991, Thèse, Université de Paris, IX, Dauphine, Paris, 1991

  8. Gander, M.J., Al-Khaleel, M., Ruehli, A.: Optimized waveform relaxation methods for longitudinal partitioning of transmission lines. IEEE Trans. Circuits Syst. I 56(8), 1732–1743 (2009)

    Article  MathSciNet  Google Scholar 

  9. Gander, M.J., Halpern, L.: Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems. SIAM J. Numer. Anal. 45(2), 666–697 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gander, M.J., Ruehli, A.: Optimized waveform relaxation methods for RC type circuits. IEEE Trans. Circuits Syst. I 51(4), 755–767 (2004)

    Article  MathSciNet  Google Scholar 

  11. Gander, M.J., Ruehli, A.E.: Optimized waveform relaxation solution of electromagnetic and circuit problems. Digest of Electr. Perf. Electronic Packaging (Austin, TX) 19, 65–68 (2010)

    Google Scholar 

  12. Gander, M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gander, M.J., Halpern, L.: Méthodes de relaxation d’ondes (SWR) pour l’équation de la chaleur en dimension 1. C.R. Math. Acad. Sci. Paris 336(6), 519–524 (2003). MR1975090 (2004a:65124)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gander, M.J., Halpern, L.: Absorbing boundary conditions for the wave equation and parallel computing. Math. Comput. 74(249), 153–176 (2005). (electronic) MR2085406 (2005h:65158)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gander, M.J., Halpern, L., Nataf, F.: Optimal Schwarz waveform relaxation for the one dimensional wave equation. SIAM J. Numer. Anal. 41(5), 1643–1681 (2003). MR2035001 (2005h:65252)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gander, M.J., Stuart, A.M.: Space-time continuous analysis of waveform relaxation for the heat equation. SIAM J. Sci. Comput. 19(6), 2014–2031 (1998). MR1638096 (99h:65164)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gander, M.J., Zhao, H.: Overlapping Schwarz waveform relaxation for the heat equation in n dimensions. BIT Numerical Mathematics 42(4), 779–795 (2002). MR1944537 (2003m:65170)

    Article  MathSciNet  MATH  Google Scholar 

  18. Giladi, E., Keller, H.B.: Space-time domain decomposition for parabolic problems. Numer. Math. 93(2), 279–313 (2002). MR1941398 (2003j:65088)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hairer, E., Wanner, G.: L’analyse au fil de l’histoire, Vol. 10. Springer-Verlag, Berlin (2001)

    MATH  Google Scholar 

  20. Jeltsch, R., Pohl, B.: Waveform relaxation with overlapping splittings. SIAM J. Sci. Comput. 16(1), 40–49 (1995). MR1311677 (95j:65079)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lelarasmee, E., Ruehli, A.E., Sangiovanni-Vincentelli, A.L.: The waveform relaxation method for time-domain analysis of large scale integrated circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. CAD-1 3, 131–145 (1982)

    Article  Google Scholar 

  22. Lions, P.-L.: On the Schwarz alternating method. III. A variant for nonoverlapping subdomains. In: Third International Symposium on Domain DecompositionMethods for Partial Differential Equations (Houston, TX, 1989), pp. 202–223. SIAM, Philadelphia, PA (1990)

    Google Scholar 

  23. Miekkala, U., Nevanlinna, O.: Convergence of dynamic iteration methods for initial value problem. SIAM J. Sci. Statist. Comput. 8(4), 459–482 (1987). MR892300 (89f:65076)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nevanlinna, O.: Remarks on Picard-Lindelöf iteration. II. BIT Numerical Mathematics 29(3), 535–562 (1989). MR1009655 (91b:65088)

    Article  MathSciNet  MATH  Google Scholar 

  25. Oberhettinger, F., Badii, L.: Tables of Laplace Transforms. Springer-Verlag, New York (1973). MR0352889 (50 #5375)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Courvoisier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Courvoisier, Y., Gander, M.J. Optimization of Schwarz waveform relaxation over short time windows. Numer Algor 64, 221–243 (2013). https://doi.org/10.1007/s11075-012-9662-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9662-y

Keywords

Navigation