Skip to main content
Log in

An unconditionally stable spatial sixth-order CCD-ADI method for the two-dimensional linear telegraph equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The telegraph equation is one of the important models in many physics and engineering. In this work, we discuss the high-order compact finite difference method for solving the two-dimensional second-order linear hyperbolic equation. By using a combined compact finite difference method for the spatial discretization, a high-order alternating direction implicit method (ADI) is proposed. The method is O(τ 2 + h 6) accurate, where τ, h are the temporal step size and spatial size, respectively. Von Neumann linear stability analysis shows that the method is unconditionally stable. Finally, numerical examples are used to illustrate the high accuracy of the new difference scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gonzalez-Velasco, E.A.: Fourier Analysis and Boundary Value Problems. Academic Press, New York (1995)

    MATH  Google Scholar 

  2. Jordan, P.M., Puri, A.: Digital signal propagation in dispersive media. J. Appl. Phys. 85(3), 1273–1282 (1999)

    Article  MathSciNet  Google Scholar 

  3. Boyce, W.E., DiPrima, R.C.: Differential Equations Elementary and Boundary Value Problems. Wiley, New York (1977)

    MATH  Google Scholar 

  4. Banasiak, J., Mika, J.R.: Singularly perturbed telegraph equations with applications in the random walk theory. J. Appl. Math. Stoch. Anal. 11, 9–28 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Tikhonov, A.N., Samarskii, A.A.: Equations of Mathematical Physics. Dover, New York (1990)

    MATH  Google Scholar 

  6. Aloy, R., Casabán, M.C., Caudillo-Mata, L.A., Jödar, L.: Computing the variable coefficient telegraph equation using a discrete eigenfunction method. Comput. Math. Appl. 54, 448–458 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ciment, M., Leventhal, S.H.: Higher order compact implicit schemes for the wave equation. Math. Comp. 29, 985–994 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ciment, M., Leventhal, S.H.: A note on the operator compact implicit method for the wave equation. Math. Comp. 32, 143–147 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mohanty, R.K., Jain, M.K., George, K.: On the use of high-order difference methods for the system of one space second-order non-linear hyperbolic equation with variable coefficients. J. Comp. Appl. Math. 72, 421–431 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Twizell, E.H.: An explicit difference method for the wave equation with extend stability range. BIT 19, 378–383 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dahlquist, G.: On accuracy and unconditional stability of linear multi-step methods for second-order differential equations. BIT 18, 133–136 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dehghan, M., Mohebbi, A.: High order implicit collocation method for the solution of two-dimensional linear hyperbolic equation. Numer. Methods PDEs 25, 232–243 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dehghan, M., Mohebbi, A.: The combination of collocation, finite difference, and multigrid methods for solution of the two-dimensional wave equation. Numer. Methods PDEs 24, 897–910 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dehghan, M., Ghesmati, A.: Combination of meshless local weak and strong (MLWS) forms to solve the two-dimensional hyperbolic telegraph equation. Eng. Anal. Bound. Elem. 34, 324–336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dehghan, M., Salehi, R.: A method based on meshless approach for the numerical solution of the two-space dimensional hyperbolic telegraph equation. Math. Method. Appl. Sci. 35, 1220–1233 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dehghan, M., Shokri, A.: A numerical method for solving the hyperbolic telegraph equation. Numer. Methods PDEs 24, 1080–1093 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dehghan, M., Ghesmati, A.: Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method. Eng. Anal. Bound. Elem 34, 51–59 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dehghan, M.: A new ADI technique for two-dimensional parabolic equation with an integral condition. Comput. Math. Appl. 43, 1477–1488 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dehghan, M.: Alternating direction implicit methods for two-dimensional diffusion with a non-local boundary condition. Int. J. Comput. Math. 72, 349–366 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. El-Azab, M.S., El-Gamel, M.: A numerical algorithm for the solution of telegraph equations. Appl. Math. Comput. 190, 757–764 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Jödar, L., Goberna, D.: Analytic-numerical solution with a priori error bounds for coupled time-dependent telegraph equations: Mixed problems. Math. Comput. Modell. 30, 39–53 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mohanty, R.K.: An unconditionally stable difference scheme for the one-space-dimensional linear hyperbolic equation. Appl. Math. Lett. 17, 101–105 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mohanty, R.K., Jam, M.K.: An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation. Numer. Methods PDEs 17, 684–688 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mohanty, R.K., Jain, M.K., Arora, U.: An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensional. Int. J. Comput. Math. 79, 133–142 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mohanty, R.K.: An operator splitting method for an unconditionally stable difference scheme for a linear hyperbolic equation with variable coefficients in two space dimensions. Appl. Math. Comput. 152, 799–806 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Mohanty, R.K.: New unconditionally stable difference schemes for the solution of multi-domensional telegraphic equations. Int. J. Comput. Math. 36, 2061–2071 (2009)

    Article  MATH  Google Scholar 

  28. Rashidinia, J., Mohammadi, R., Jalilian, R.: Spline methods for the solution of hyperbolic equation with variable coefficients. Numer. Methods PDEs 32, 1–9 (2006)

    MATH  Google Scholar 

  29. Ding, H., Zhang, Y.: A new fourth-order compact finite difference scheme for the two-dimensional second-order hyperbolic equation. J. Comp. Appl. Math. 230, 626–632 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Karaa, S.: Unconditionally stable ADI scheme of higher-order for linear hyperbolic equations. Int. J. Comput. Math. 87, 3030–3038 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xie, S.-S., Yi, S.-C., Kwonb, T.I.: Fourth-order compact difference and alternating direction implicit schemes for telegraph equations. Comput. Phys. Commun. 183, 552–569 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chu, P., Fan, C.: A three-point combined compact difference scheme. J. Comput. Phys. 140, 370–399 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sun, H.W., Li, L. Z.: A CCD-ADI method for unsteady convection-diffusion equations. Comput. Phys. Commun. 185, 790–797 (2014)

    Article  MathSciNet  Google Scholar 

  34. Lee, S.T., Liu, J., Sun, H.W.: Combined compact difference scheme for linear second-order partial differential equations with mixed derivative. J. Comput. Appl. Math. 264, 23–37 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, L., Sun, H., Tam, S.: A spatial sixth-order alternating direction implicit method for two-dimensional cubic nonlinear Schrödinger equations. Comput. Phys. Commun. 187, 38–48 (2015)

    Article  MathSciNet  Google Scholar 

  36. Gao, G., Sun, H.: Three-point combined compact alternating direction implicit difference schemes for two-dimensional time-fractional advection-diffusion equations. Commun. Comput. Phys. 17, 487–509 (2015)

    Article  MathSciNet  Google Scholar 

  37. Gao, G., Sun, H.: Three-point combined compact difference schemes for time-fractional advection-diffusion equations with smooth solutions. J. Comput. Phys. 298, 520–538 (2015)

    Article  MathSciNet  Google Scholar 

  38. Peaceman, D., Rachford, H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  39. Douglas, J.Jr., Peaceman, D.: Numerical solution of two-dimensional heat flow problems. AIChE J. 1, 505–512 (1955)

    Article  Google Scholar 

  40. Douglas, J.Jr., Rachford, H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Amer. Math. Soc. 82, 421–439 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mohanty, R.K.: An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients. Appl. Math. Comput. 165, 229–236 (2005)

    MathSciNet  MATH  Google Scholar 

  42. Pandit, S., Kumar, M., Tiwari, S.: Numerical simulation of second-order hyperbolic telegraph type equations with variable coefficients. Comput. Phys. Commun. 187, 83–90 (2015)

    Article  MathSciNet  Google Scholar 

  43. He, D.: An unconditionally stable CCD-ADI method for a two-dimensional linear hyperbolic equation with variable coefficients. Submitted

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, D. An unconditionally stable spatial sixth-order CCD-ADI method for the two-dimensional linear telegraph equation. Numer Algor 72, 1103–1117 (2016). https://doi.org/10.1007/s11075-015-0082-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-0082-7

Keywords

Mathematics Subject Classification (2010)

Navigation