Skip to main content
Log in

An implicit numerical method of a new time distributed-order and two-sided space-fractional advection-dispersion equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Distributed-order differential equations have recently been investigated for complex dynamical systems, which have been used to describe some important physical phenomena. In this paper, a new time distributed-order and two-sided space-fractional advection-dispersion equation is considered. Firstly, we transform the time distributed-order fractional equation into a multi-term time-space fractional partial differential equation by applying numerical integration. Then an implicit numerical method is constructed to solve the multi-term fractional equation. The uniqueness, stability and convergence of the implicit numerical method are proved. Some numerical results are presented to demonstrate the effectiveness of the method. The method and techniques can be extended to other time distributed-order and space-fractional partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, E.E., Gelhar, L.W.: Field study of dispersion in a heterogeneous aquifer: 2. Spatial moment analysis, Water. Resour. Res. 28(12), 3293–3307 (1992)

    Article  Google Scholar 

  2. Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed order diffusion-wave equation, II. Application of Laplace and Fourier transforms. Proc. R. Soc., A 465, 1893–1917 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order nonlinear reaction-diffusion equations. J. Comput. Appl. Math. 275, 216–227 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ford, N.J., Morgado, M.L., Rebelo, M.: A numerical method for the distributed order time-fractional diffusion equation, IEEE Explore Conference Proceedings, ICFDA’14 International Conference on Fractional Differentiation and Its Applications, Catania, Italy (2014)

  5. Rebelo, M., Morgado, M.L.: Numerical solution of the reaction-wave-diffusion equation with distributed order in time, Proceedings of the 14th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2014, Cadiz, Spain, July, 3-7 , (2014) Vol IV 1057-1068. ISBN: 978-84-616-9216-3

  6. Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comp. Appl. Math. 225(1), 96–104 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Y.U.: Algorithms for the fractional calculus: A selection of numerical methods. Comput. Methods Appl. Mech. Engrg. 194, 743–773 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sun, Z.Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain. J. Math. Anal. Appl. 389(2), 1117–1127 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gorenflo, R., Luchko, Y., Stojanović, M.: Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal. 16, 297–316 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang, H., Liu, F., Meerschaert, M.M., McGough, R.: Fundamental solutions for the multi-term modified power law wave equations in a finite domain, Electronic. J. Math. Anal. Appl. 1(1), 55–66 (2013)

    Google Scholar 

  12. Jiao, Z., Chen, Y., Podlubny, I.: Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives. Springer (2012)

  13. Katsikadelis, J.T.: Numerical solution of distributed order fractional differential equations. J. Comput. Phys. 259, 11–22 (2014)

    Article  MathSciNet  Google Scholar 

  14. Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck Equation. J. Comp. Appl. Math. 166, 209–219 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 91, 12–20 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time fractional wave equations. Fractional Calc. Appl. Anal. 16(1), 9–25 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Lorenz, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meerschaert, M.M., Naneb, E., Vellaisamy, P.: Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl. 379, 216–228 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Podlubny, I.: Fractional differential equaitions. Acdemic Press, New York (1999)

    MATH  Google Scholar 

  23. Podlubny, I., Skovranek, T., Jara, B.M.V., Petras, I., Verbitsky, V., Chen, Y.: Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders. Phil. Trans. R. Soc. A: Math., Phys. Eng. Sci. 371, 20120153 (2013)

    Article  MathSciNet  Google Scholar 

  24. Sokolov, I.M., Chechkin, A.V., Klafter, J.: Distributed-order fractional kinetics. Acta Physica Polonica 35, 1323–1341 (2004)

    Google Scholar 

  25. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ye, H., Liu, F., Turner, I., Anh, V., Burrage, K.: Series expansion solutions for the multi-term time and space fractional partial differential equations in two and three dimensions. Eur. Phys. J., Spec. Top. 222, 1901–1914 (2013)

    Article  Google Scholar 

  27. Zhang, Y., Benson, D.A., Reeves, D.M.: Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications. Adv. Water Res. 32, 561–581 (2009)

    Article  Google Scholar 

  28. Zhao, X., Sun, Z.-Z.: A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 230, 6061–6074 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, X.X., Mouchao L.: Persistence of anomalous dispersion in uniform porous media demonstrated by pore-scale simulations. Water. Resour. Res. 43, W07437 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Liu, F., Turner, I. et al. An implicit numerical method of a new time distributed-order and two-sided space-fractional advection-dispersion equation. Numer Algor 72, 393–407 (2016). https://doi.org/10.1007/s11075-015-0051-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-0051-1

Keywords

Navigation