Skip to main content
Log in

The sparse cardinal sine decomposition and its application for fast numerical convolution

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Fast convolution algorithms on unstructured grids have become a well established subject. Algorithms such as Fast Multipole Method (FMM), Adaptive Cross Approximation (ACA) or \(\mathcal {H}\)-matrices for instance are, by now, classical and reduce the complexity of the matrix-vector product from O(N 2) to O(N log N) with a broad range of applications in e.g. electrostatics, magnetostatics, acoustics or electromagnetics. In this paper we describe a new algorithm of which we would like to explore the potential. Based on the Non Uniform FFT algorithm, it is at the same time simple, efficient and versatile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acton, F.S.: Numerical Methods That Work. Math. Assoc. Amer., Washington D.C. (1990)

  2. Arnold, A., Fahrenberger, F., Holm, C., Lenz, O., Bolten, M., Dachsel, H., Halver, R., Kabadshow, I., Gähler, F., Heber, F., Iseringhausen, J., Hofmann, M., Pippig, M., Potts, D., Sutmann, G.: Comparison of scalable fast methods for long-range interactions. Phys. Rev. E 88, 063308 (2013)

  3. Chaillat, S., Bonnet, M.: A new fast multipole formulation for the elastodynamic half-space green’s tensor. J. Comput. Phys. 256, 787–808 (2014)

    Article  MathSciNet  Google Scholar 

  4. See http://www.cims.nyu.edu/cmcl/cmcl.html

  5. Dutt, A., Rokhlin, V.: Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Comput., 14 (1993)

  6. Elbel, B., Steidl, G.: Fast fourier transforms for nonequispaced data. In: Chui, C.K., Schumaker, L.L. (eds.) Approximation Theory IX, pp. 39–46. Vanderbilt University Press, Nashville (1998)

  7. Eremenko, A., Yuditskii, P.: Uniform approximation of sgn(x) by polynomials and entire functions. J. Anal. Math. 101, 313–324 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ewald, P.: Dir Berechnung optischer und elektrostatischer Gitterpotentiale. In Ann. Phys. 369, 253–287 (1921)

    Article  Google Scholar 

  9. Fliege, J., Maier, U.: A two-stage approach for computing cubature formulae for the sphere. In Mathematik 139T, Universitat Dortmund, Fachbereich Mathematik, Universitat Dortmund, 44221 (1996)

  10. Greengard, L., Lin, P.: Spectral approximation of the free-space heat kernel. Appl. Comput. Harmonic Anal. 9, 83–97 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Greengard, L.: The rapid evaluation of potential fields in particle systems. MIT Press (1988)

  12. Hesse, K., Sloan I.H., Womersley, R.S.: Numerical integration on the sphere. In: Handbook of Geomathematics, pp. 1185–1219. Springer (2010)

  13. Hackbusch, W.: Hierarchische Matrizen. Springer (2009)

  14. Hamming, R.W. Numerical Methods for Scientists and Engineers, 2nd Ed. Dover, New York (1986)

  15. Kahaner, D., Moler, C., Nash, S.: Numerical methods and software. Prentice-Hall (1989)

  16. Lebedev, V.I., Laikov, D.N.: A quadrature formula for the sphere of the 131st algebraic order of accuracy. Dokl. Math. 59(3), 477–481 (1999)

    Google Scholar 

  17. Lee, J.-Y., Greengard, L.: Accelerating the nonuniform fast Fourier transform. SIAM Rev. 48, 443–454 (2004)

    MathSciNet  Google Scholar 

  18. Lee, J.-Y., Greengard, L.: The type 3 nonuniform fft and its application. J. Comput. Phys. 206, 1–5 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. See http://www.cims.nyu.edu/cmcl/nufft/nufft.html

  20. See http://www.cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html

  21. Pippig, M., Potts, D.: Particle simulation based on nonequispaced fast Fourier transforms. In: Fast Methods for Long-Range Interactions in Complex Systems, IAS-Series, pp. 131–158. Forschungszentrum Jülich (2011)

  22. See http://www-user.tu-chemnitz.de/~potts/nfft/

  23. Potts, D., Steidl, G., Nieslony, A.: Fast convolution with radial kernels at nonequispaced knots. Numer. Math. 98, 329–351 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Weisstein, E.W.: Lanczos σ factor. Mathworld-A Wolfram Web Resource. http://mathworld.wolfram.com/LanczosSigmaFactor.html

  25. Zolotarev, E.I.: Application of the elliptic functions to questions on functions of least and most deviation from zero. Bull. de l’Académie de Sci. de St.-Petersbourg 24(3) (1878)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Alouges.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alouges, F., Aussal, M. The sparse cardinal sine decomposition and its application for fast numerical convolution. Numer Algor 70, 427–448 (2015). https://doi.org/10.1007/s11075-014-9953-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9953-6

Keywords

Mathematics Subject Classifications (2010)

Navigation