Skip to main content
Log in

Survey on the Technique of Hierarchical Matrices

  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

Usually, one avoids numerical algorithms involving operations with large, fully populated matrices. Instead, one tries to reduce all algorithms to matrix-vector multiplications involving only sparse matrices. The reason is the large number of floating point operations; e.g., \(\mathcal {O}(n^{3})\) for the multiplication of two general n × n matrices. The hierarchical matrix (\(\mathcal {H}\)-matrix) technique provides tools to perform the matrix operations approximately in almost linear work \(\mathcal {O}(n\log ^{\ast }n)\). The approximation errors are nevertheless acceptable, since large-scale matrices are usually obtained from discretisations which anyway contain a discretisation error. Adjusting the approximation error to the discretisation error yields the factor \(\mathcal {O}(\log ^{\ast }n).\) The operations enabled by the \(\mathcal {H}\)-matrix technique are not only the matrix addition and multiplication but also the matrix inversion and the LU or Cholesky decomposition. The positive statements from above do not hold for all matrices, but they are valid for the important class of matrices originating from standard discretisations of elliptic partial differential equations or the related integral equations. An important aspect is the fact that the algorithms can be applied in a black-box fashion. Having all matrix operations available, a much larger class of problems can be treated than by the restriction to matrix-vector multiplications. The LU decomposition can be used to construct fast iterations for solving linear systems. Also eigenvalue problems can be treated. The computation of matrix-valued functions is possible (e.g., the matrix exponential function) as well as the solution of matrix equations (e.g., of the Riccati equation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The \(\mathcal {H}\)-matrix algorithms will implicitly produce an ordering (cf. (13).

  2. It would be more precise to consider triples (M, A, B) with M = AB T, but this would complicate the later notations.

  3. The support of a function \(f:X\rightarrow Y\) is defined by \(\operatorname {supp}(f):=\overline {\{x:f(x)\neq 0\}}\).

  4. In practice, interpolation is preferred.

  5. We use the subsets \(\tau \subset I\) as identifiers of the vertices in T(I),since in the usual cases different vertices correspond to different subsets. If one allows vertices τ with exactly one son vertex, one may introduce a more involved notations by labels.

  6. For a precise notation, one has to change the identifier of the vertices of the tree to distinguish the father τ from the son τ 1.

  7. For simplicity we assume that the nodal points satisfy ξ i ξ j for ij.

  8. For more general trees see [26, Sections 5.5.2–5.5.3].

  9. Even if I = J,the Petrov–Galerkin discretisation may use different ansatz functions ϕ i (iI) and test functions ψ j (jJ) so that X i Y i .

  10. For variants of the admissibility condition see [26, (5.7a–c) and Section 5.2.3].

  11. This statement shows that the partition might be finer than necessary. Therefore it makes sense to coarsen the partition. This technique checks whether a coarser partition with the same accuracy exists without increasing the storage size (cf. [26, Section 6.7.2]).

  12. This includes the zero blocks which are considered as low-rank blocks of rank zero: r(b)=0.

  13. Of course, the arising matrix-matrix multiplications and additions can be parallelised.

  14. Without loss of generality, A can be scaled so that the smallest eigenvalue is ≥1.

References

  1. Baur, U.: Low-rank solution of data-sparse Sylvester equations. Numer. Linear Algebra Appl. 15, 837–851 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baur, U., Benner, P.: Factorized solution of Lyapupov equations based on hierarchical matrix arithmetic. Computing 78, 211–234 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bebendorf, M.: Hierarchical Matrices. Lecture Notes Computer Science Engineering, vol. 63. Springer, Berlin (2008)

  4. Bebendorf, M., Hackbusch, W.: Existence of \(\mathcal {H}\)-matrix approximants to the inverse FE-matrix of elliptic operators with \({L}^{\infty }\)-coefficients. Numer. Math. 95, 1–28 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benner, P., Breiten, T.: Low rank methods for a class of generalized Lyapunov equations and related issues. Numer. Math. 124, 441–470 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Börm, S.: Efficient Numerical Methods for Non-local Operators. EMS, Zürich (2010). Corrected 2nd printing (2013)

  7. Börm, S., Grasedyck, L.: Hybrid cross approximation of integral operators. Numer. Math. 101, 221–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Börm, S., Reimer, K.: Efficient arithmetic operations for rank-structured matrices based on hierarchical low-rank updates. Comput. Vis. Sci. 16, 247–258 (2013)

    Article  MathSciNet  Google Scholar 

  9. Braess, D., Hackbusch, W.: Approximation of 1/x by exponential sums in \([1,\infty )\). IMA J. Numer. Anal. 25, 685–697 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Braess, D., Hackbusch, W.: On the efficient computation of high-dimensional integrals and the approximation by exponential sums. In: DeVore, R.A., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp 39–74. Springer, Berlin (2009)

  11. Dahmen, W., Prössdorf, S., Schneider, R.: Wavelet approximation methods for pseudodifferential equations II: Matrix compression and fast solution. Adv. Comput. Math. 1, 259–335 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Faustmann, M., Melenk, J.M., Praetorius, D.: \(\mathcal {H}\)-matrix approximability of the inverses of FEM matrices. Numerical Mathematics (2015). 10.1007/s00211-015-0706-9

  13. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10, 345–363 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gerds, P., Grasedyck, L.: Solving an elliptic PDE eigenvalue problem via automated multi-level substructuring and hierarchical matrices. Comput. Vis. Sci. 16, 283–302 (2013)

    Article  MathSciNet  Google Scholar 

  15. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  16. Grasedyck, L.: Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure. Computing 72, 247–265 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grasedyck, L.: Existence of a low rank or \(\mathcal {H}\)-matrix approximant to the solution of a Sylvester equation. Numer. Linear Algebra Appl. 11, 371–389 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grasedyck, L., Hackbusch, W.: Construction and arithmetics of \(\mathcal {H}\)-matrices. Computing 70, 295–334 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grasedyck, L., Hackbusch, W., Kriemann, R.: Performance of \(\mathcal {H}\)-LU preconditioning for sparse matrices. Comput. Methods Appl. Math. 8, 336–349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grasedyck, L., Kriemann, R., Le Borne, S.: Parallel black box \(\mathcal {H}\)-LU preconditioning for elliptic boundary value problems. Comput. Vis. Sci. 11, 273–291 (2008)

    Article  MathSciNet  Google Scholar 

  21. Grasedyck, L., Kriemann, R., Le Borne, S.: Domain decomposition based \(\mathcal {H}\)-LU preconditioning. Numer. Math. 112, 565–600 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numer. 6, 229–269 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hackbusch, W.: Direct domain decomposition using the hierarchical matrix technique. In: Herrera, I., et al. (eds.) Domain Decomposition Methods in Science and Engineering, pp 39–50. National Autonomous University of Mexico, Mexico City (2003)

  24. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus, SSCM, vol. 42. Springer, Berlin (2012)

  25. Hackbusch, W.: Numerical tensor calculus. Acta Numer. 23, 651–742 (2014)

    Article  MathSciNet  Google Scholar 

  26. Hackbusch, W.: Hierarchical Matrices: Algorithms and Analysis, SSCM, vol. 49. Springer, Berlin (2015)

  27. Hackbusch, W.: New estimates for the recursive low-rank truncation of block-structured matrices. Numer. Math. (2015). 10.1007/s00211-015-0716-7

  28. Hackbusch, W.: Solution of linear systems in high spatial dimensions. Comput. Vis. Sci. (2015). To appear

  29. Hackbusch, W., Khoromskij, B., Kriemann, R.: Direct Schur complement method by domain decomposition based on \(\mathcal {H}\)-matrix approximation. Comput. Vis. Sci. 8, 179–188 (2005)

    Article  MathSciNet  Google Scholar 

  30. Hackbusch, W., Khoromskij, B., Sauter, S.A.: On \(\mathcal {H}^{2}\)-matrices. In: Bungartz, H.J., Hoppe, R.H.W., Zenger, C. (eds.) Lectures on Applied Mathematics, pp 9–29. Springer, Berlin (2000)

  31. Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54, 463–491 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Higham, N.J.: Functions of Matrices, Theory and Computation. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  33. Kriemann, R. HLIBpro. http://www.hlibpro.com

  34. Kriemann, R.: Parallel \(\mathcal {H}\)-matrix arithmetics on shared memory systems. Computing 74, 273–297 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kriemann, R.: \(\mathcal {H}\)-LU factorization on many-core systems. Comput. Vis. Sci. 16, 105–117 (2013)

    Article  MathSciNet  Google Scholar 

  36. Kriemann, R., Le Borne, S.: \(\mathcal {H}\)-FAINV: Hierarchically factored approximate inverse preconditioners. Comput. Vis. Sci. (2015). To appear

  37. Le Borne, S., Grasedyck, L., Kriemann, R.: Domain decomposition based \(\mathcal {H}\)-LU preconditioners. In: Widlund, O.B., Keyes, D.E. (eds.) Domain Decomposition Methods in Science and Engineering XVI, Lecture Notes Computer Science Engineering, vol. 55, pp 661–668. Springer, Berlin (2007)

  38. Lize, B.: Résolution directe rapide pour les éléments finis de frontière en électromagnétisme et acoustique: h-matrices. Parallélisme et applications industrielles, p 13. Doctoral thesis. Université Paris (2014)

  39. Penzl, T.: Low rank solution of data-sparse Sylvester equations. Syst. Control Lett. 40, 139–144 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sauter, S.A., Schwab, C.: Boundary Element Methods, SSCM, vol. 39. Springer, Berlin (2011)

  41. Skeel, R.D.: Iterative refinement implies numerical stability for Gaussian elimination. Math. Comput. 35, 817–832 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  42. Stüben, K.: A review of algebraic multigrid. J. Comput. Appl. Math. 128, 281–309 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I thank the anonymous referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Hackbusch.

Additional information

Dedicated to Eberhard Zeidler’s 75th birthday.

The asterix in \(\protect \qopname \relax o{log}^{\ast }\) replaces some exponent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hackbusch, W. Survey on the Technique of Hierarchical Matrices. Vietnam J. Math. 44, 71–101 (2016). https://doi.org/10.1007/s10013-015-0168-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-015-0168-5

Keywords

Mathematics Subject Classification (2010)

Navigation