Skip to main content
Log in

A spatially second-order accurate implicit numerical method for the space and time fractional Bloch-Torrey equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In recent years, it has been found that many phenomena in engineering, physics, chemistry and other sciences can be described very successfully by models using mathematical tools from Fractional Calculus. Recently, a new space and time fractional Bloch-Torrey equation (ST-FBTE) has been proposed (Magin et al., J. Magn. Reson. 190(2), 255–270, 2008), and successfully applied to analyse diffusion images of human brain tissues to provide new insights for further investigations of tissue structures. In this paper, we consider the ST-FBTE with a nonlinear source term on a finite domain in three-dimensions. The time and space derivatives in the ST-FBTE are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. Firstly, we propose a spatially second-order accurate implicit numerical method (INM) for the ST-FBTE whereby we discretize the Riesz fractional derivative using a fractional centered difference. Secondly, we prove that the implicit numerical method for the ST-FBTE is uniquely solvable, unconditionally stable and convergent, and the order of convergence of the implicit numerical method is \(O\left (\tau ^{2-\alpha }+\tau +h_{x}^{2}+h_{y}^{2}+h_{z}^{2}\right )\). Finally, some numerical results are presented to support our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baeumer, B., Kovály, M., Meerschaert, M.M.: Fractional reproduction-dispersal equations and heavy tail dispersal kernels. Bull. Math. Biol. 69, 2281–2297 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baeumer, B., Kovály, M., Meerschaert, M.M.: Numerical solutions for fractional reaction-diffusion equations. Comput. Math. Appl. 55, 2212–2226 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Celik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, C., Liu, F., Burrage, K.: Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation. Appl. Math. Comp. 198, 754–769 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, C., Liu, F., Anh, V.: A fourier method and an extrapolation technique for stokes’ first problem for a heated generalized second grade fluid with fractional derivative. J. Comp. Appl. Math. 223, 777–789 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G., Paradisi, P.: Discrete random walk models for space-time fractional diffusion. Chem. Phys. 284, 67–90 (2002)

    Article  Google Scholar 

  7. Hall, M., Barrick, T.: From diffusion-weighted MRI to anomalous diffusion imaging. Magn. Reson. Med. 59(3), 447–455 (2008)

    Article  Google Scholar 

  8. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  9. Le Bihan, D.: Molecular diffusion, tissue microdynamics and microstructure. NMR Biomed. 8(7), 375–386 (1995)

    Article  Google Scholar 

  10. Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional fokker-planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191, 12–20 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Liu, F., Burrage, K.: Novel techniques in parameter estimation for fractional dynamical models arising from biological systems. Comput. Math. Appl. 62, 822–833 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Magin, R., Abdullah, O., Baleanu, D., Zhou, X.: Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J. Magn. Reson. 190(2), 255–270 (2008)

    Article  Google Scholar 

  14. Magin, R., Feng, X., Baleanu, D.: Solving the fractional order Bloch equation. Concepts Magn. Reson. Part A 34A(1), 16–23 (2009)

    Article  Google Scholar 

  15. Bhalekar, S., Daftardar-Gejji, V., Baleanu, D., Magin, R.: Fractional bloch equation with delay. Comput. Math. Appl. 61(5), 1355–1365 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006(48391), 12 (2006)

    MathSciNet  Google Scholar 

  17. Podlubny, I.: Equations, fractional differential. Academic, New York (1999)

    Google Scholar 

  18. Shen, S., Liu, F., Anh, V.: Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation. Numer. Algoritm. 56(3), 383–403 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Smith, G.D.: Numerical solution of partial differential equations: Finite difference methods. Oxford University, New York (1985)

    MATH  Google Scholar 

  20. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34(1), 200–218 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yang, Q., Liu, F., Turner, I.: Stability and convergence of an effective numerical method for the time-space fractional Fokker-Planck equation with a nonlinear source term. Int. J. Differ. Equat. (2010). doi:10.1155/2010/464321

  22. Yu, Q., Liu, F., Anh, V., Turner, I.: Solving linear, method, nonlinear space-time fractional reaction-diffusion equations by Adomian decomposition. Internat. J. Numer. Meth. Eng. 74, 138–158 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yu, Q., Liu, F., Turner, I., Burrage, K.: A computationally effective alternating direction method for the space and time fractional Bloch-Torrey equation in 3-D. Appl. Math. Comput. 219, 4082–4095 (2012)

    Article  MathSciNet  Google Scholar 

  24. Yu, Q., Liu, F., Turner, I., Burrage, K.: Stability and convergence of an implicit numerical method for the space and time fractional Bloch-Torrey equation. Phil. Trans. R. Soc. A 371(1990), 20120150 (2013). doi:10.1098/rsta.2012.0150

    Article  MathSciNet  Google Scholar 

  25. Yu, Q., Liu, F., Turner, I., Burrage, K.: Numerical investigation of three types of space and time fractional Bloch-Torrey equations in 2D. Cent. Eur. J. Phys. (2013). doi:10.2478/s11534-013-0220-6

  26. Zaslavsky, G.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371(6), 461–580 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhou, X., Gao, Q., Abdullah, O., Magin, R.: Studies of anomalous diffusion in the human brain using fractional order calculus. Magn. Reson. Med. 63(3), 562–569 (2010)

    Article  Google Scholar 

  28. Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution, analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 46(2), 1079–1095 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion with a nonlinear source term. SIAM J. Numer. Anal. 47(3), 1760–1781 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, J., Yu, Q., Liu, F. et al. A spatially second-order accurate implicit numerical method for the space and time fractional Bloch-Torrey equation. Numer Algor 66, 911–932 (2014). https://doi.org/10.1007/s11075-013-9768-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9768-x

Keywords

Navigation