Skip to main content
Log in

Cell decomposition of almost smooth real algebraic surfaces

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Let Z be a two dimensional irreducible complex component of the solution set of a system of polynomial equations with real coefficients in N complex variables. This work presents a new numerical algorithm, based on homotopy continuation methods, that begins with a numerical witness set for Z and produces a decomposition into 2-cells of any almost smooth real algebraic surface contained in Z. Each 2-cell (a face) has a generic interior point and a boundary consisting of 1-cells (edges). Similarly, the 1-cells have a generic interior point and a vertex at each end. Each 1-cell and each 2-cell has an associated homotopy for moving the generic interior point to any other point in the interior of the cell, defining an invertible map from the parameter space of the homotopy to the cell. This work draws on previous results for the curve case. Once the cell decomposition is in hand, one can sample the 2-cells and 1-cells to any resolution, limited only by the computational resources available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti, L., Mourrain, B.: Regularity criteria for the topology of algebraic curves and surfaces. In: Mathematics of Surfaces XII, LNCS, vol. 4647, pp. 1–28 (2007)

  2. Alberti, L., Mourrain, B., Técourt, J.P.: Isotopic triangulation of a real algebraic surface. J. Symb. Comput. 44(9), 1291–1310 (2009)

    Article  MATH  Google Scholar 

  3. Andreotti, A., Frankel, T.: The Lefschetz theorem on hyperplane sections. Ann. Math. 69(2), 713–717 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnon, D.S., Collins, G.E., McCallum, S.: An adjacency algorithm for cylindrical algebraic decompositions of three-dimensional space. J. Symb. Comput. 5(1–2), 163–187 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry, vol. 10. Algorithms and Computation in Mathematics, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  6. Bates, D.J., Hauenstein, J.D., Peterson, C., Sommese, A.J.: A numerical local dimension test for points on the solution set of a system of polynomial equations. SIAM J. Numer. Anal. 47, 3608–3623 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for numerical algebraic geometry. Available at http://www.nd.edu/~sommese/bertini (2012). Accessed 17 Sept 2012

  8. Berberich, E., Emeliyanenko, P., Kobel, A., Sagraloff, M.: Exact symbolic-numeric computation of planar algebraic curves. Preprint. Available at arXiv:1201.1548 (2012)

  9. Berberich, E., Kerber, M., Sagraloff, M.: An efficient algorithm for the stratification and triangulation of an algebraic surface. Comput. Geom. 43(3), 257–278 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boissonnat, J.D., Cohen-Steiner, D., Vegter, G.: Isotopic implicit surface meshing. Discrete Comput. Geom. 39(1), 138–157 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheng, J.S., Gao, X.S., Li, M.: Determining the topology of real algebraic surfaces. In: Mathematics of Surfaces XI, LNCS, vol. 3604, pp. 121–146 (2005)

  12. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. Springer Lect. Notes Comput. Sci. 33, 515–532 (1975)

    Google Scholar 

  13. Drexler, F.J.: Eine Methode zur Berechnung sämtlicher Lösungen von Polynomgleichungssystemen. Numer. Math. 29(1), 45–58 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fortuna, E., Gianni, P., Parenti, P., Traverso, C.: Computing the topology of real algebraic surfaces. In: ISSAC 02, pp. 92–100. ACM Press, New York (2002)

    Chapter  Google Scholar 

  15. Garcia, C.B., Zangwill, W.I.: Finding all solutions to polynomial systems and other systems of equations. Math. Program. 16(2), 159–176, (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Goresky, M., MacPherson, R.: Stratified Morse theory. In: Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14. Springer, Berlin (1988)

    Google Scholar 

  17. Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Regeneration homotopies for solving systems of polynomials. Math. Comput. 80, 345–377 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Regenerative cascade homotopies for solving polynomial systems. Applied Math. Comput. 218(4), 1240–1246 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hauenstein, J.D., Wampler, C.W.: Isosingular sets and deflation. http://www4.ncsu.edu/~jdhauens/preprints/hwIsosingular.pdf. Accessed 23 Sept 2012

  20. Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Math. Comput. 64(212), 1541–1555 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lee, T.L., Li, T.Y., Tsai, C.H.: HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method. Computing 83, 109–133 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, T.Y.: Numerical solution of polynomial systems by homotopy continuation methods. In: Handbook of Numerical Analysis, vol. XI, pp. 209–304. North-Holland, Amsterdam (2003)

    Chapter  Google Scholar 

  23. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. Comput. Graph. 21(4), 163–170 (1987)

    Article  Google Scholar 

  24. Lu, Y., Bates, D.J., Sommese, A.J., Wampler, C.W.: Finding all real points of a complex curve. In: Proceedings of the Midwest Algebra, Geometry and its Interactions Conference, Contemporary Mathematics, vol. 448, pp. 183–205. AMS (2007)

  25. Milnor, J.: Morse theory. In: Spivak, M., Wells, R. (eds.) Based on Lecture Notes. Annals of Mathematics Studies, no. 51. Princeton University Press, Princeton (1963)

    Google Scholar 

  26. Morgan, A.P.: A transformation to avoid solutions at infinity for polynomial systems. Appl. Math. Comput. 18(1), 77–86 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Morgan, A.P., Sommese, A.J.: A homotopy for solving general polynomial systems that respects m-homogeneous structures. Appl. Math. Comput. 24, 101–113 (1987)

    Article  MathSciNet  Google Scholar 

  28. Morgan, A.P., Sommese, A.J., Wampler, C.W.: Computing singular solutions to polynomial systems. Adv. Appl. Math. 13(3), 305–327 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Morgan, A.P., Sommese, A.J., Wampler, C.W.: A power series method for computing singular solutions to nonlinear analytic systems. Numer. Math. 63(3), 391–409 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Myszka, D., Murray, A., Wampler, C.W.: Mechanism branches, turning curves, and critical points. In: Proc. IDETC Mechanisms & Robotics Conf. (CDROM) ASME. Chicago (2012)

  31. Seong, J.K., Elber, G., Kim, M.S.: Contouring 1- and 2-manifolds in arbitrary dimensions. In: SMI 05, pp. 218-227 (2005)

  32. Sommese, A.J., Verschelde, J.: Numerical homotopies to compute generic points on positive dimensional algebraic sets. J. Complex. 16(3), 572–602 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sommese, A.J., Verschelde, J., Wampler, C.W.: Numerical decomposition of the solution sets of polynomial systems into irreducible components. SIAM J. Numer. Anal. 38, 2022–2046 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sommese, A.J., Verschelde, J., Wampler, C.W.: Using monodromy to decompose solution sets of polynomial systems into irreducible components. In: Applications of Algebraic Geometry to Coding Theory, Physics and Computation (Eilat, 2001). NATO Sci. Ser. II Math. Phys. Chem., vol. 36, pp. 297–315. Kluwer, Dordrecht (2001)

    Chapter  Google Scholar 

  35. Sommese, A.J., Verschelde, J., Wampler, C.W.: Symmetric functions applied to decomposing solution sets of polynomial systems. SIAM J. Numer. Anal. 40, 2026–2046 (2001)

    Article  MathSciNet  Google Scholar 

  36. Sommese, A.J., Verschelde, J., Wampler, C.W.: Homotopies for intersecting solution components of polynomial systems. SIAM J. Numer. Anal. 42, 1552–1571 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sommese, A.J., and Wampler, C.W.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  38. Verschelde, J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276 (1999)

    Article  MATH  Google Scholar 

  39. Wampler, C.W., Sommese, A.J.: Numerical algebraic geometry and algebraic kinematics. Acta Numer. 20, 469–567 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Wampler.

Additional information

S. Di Rocco was supported by the Mittag-Leffler Institute, the University of Notre Dame, and VR grant NT:2010-5563. J. D. Hauenstein was supported by the Mittag-Leffler Institute and NSF grants DMS-0915211 and DMS-1114336. A. J. Sommese was supported by the Mittag-Leffler Institute, the Duncan Chair of the University of Notre Dame, and NSF grant DMS-0712910. C. W. Wampler was supported by the Mittag-Leffler Institute and NSF grant DMS-0712910.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besana, G.M., Di Rocco, S., Hauenstein, J.D. et al. Cell decomposition of almost smooth real algebraic surfaces. Numer Algor 63, 645–678 (2013). https://doi.org/10.1007/s11075-012-9646-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9646-y

Keywords

Navigation