Skip to main content
Log in

HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method

  • Published:
Computing Aims and scope Submit manuscript

Abstract

HOM4PS-2.0 is a software package in FORTRAN 90 which implements the polyhedral homotopy continuation method for solving polynomial systems. It updates its original version HOM4PS in three key aspects: (1) new method for finding mixed cells, (2) combining the polyhedral and linear homotopies in one step, (3) new way of dealing with curve jumping. Numerical results show that this revision leads to a spectacular speed-up, ranging up to 1950s, over its original version on all benchmark systems, especially for large ones. It surpasses the existing packages in finding isolated zeros, such as PHCpack (Verschelde in ACM Trans Math Softw 25:251–276, 1999), PHoM (Gunji et al. in Computing 73:57–77, 2004), and Bertini (Bates et al. in Software for numerical algebraic geometry. Available at http://www.nd.edu/~sommese/bertini), in speed by big margins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bates DJ, Hauenstein JD, Sommese AJ, Wampler CW Bertini: Software for numerical algebraic geometry. Available at http://www.nd.edu/~sommese/bertini

  2. Bates DJ, Hauenstein JD, Sommese AJ, Wampler CW (2008) Adaptive multiprecision path tracking. SIAM J Numer Anal 46(2): 722–746

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernshtein DN (1975) The number of roots of a system of equations. Funct Anal Appl 9(3): 183–185

    Article  MATH  Google Scholar 

  4. Björk G, Fröberg R (1991) A faster way to count the solutions of inhomogeneous systems of algebraic equations. J Symb Comput 12(3): 329–336

    Article  Google Scholar 

  5. Boege W, Gebauer R, Kredel H (1986) Some examples for solving systems of algebraic equations by calculating Groebner bases. J Symb Comput 2: 83–98

    Article  MATH  MathSciNet  Google Scholar 

  6. Cohn H (1982) An explicit modular equation in two variables and Hilbert’s twelfth problem. Math Comp 38: 227–236

    Article  MATH  MathSciNet  Google Scholar 

  7. Dai T, Kim S, Kojima M (2003) Computing all nonsingular solutions of cyclic-n polynomial using polyhedral homotopy continuation methods. J Comput Appl Math 152(1–2): 83–97

    MATH  MathSciNet  Google Scholar 

  8. Gao T, Li TY (2000) Mixed volume computation via linear programming. Taiwan J Math 4: 599–619

    MATH  MathSciNet  Google Scholar 

  9. Gao T, Li TY (2003) Mixed volume computation for semi-mixed systems. Discrete Comput Geom 29(2): 257–277

    MATH  MathSciNet  Google Scholar 

  10. Gao T, Li TY, Wu M (2005) Algorithm 846: MixedVol: a software package for mixed volume computation. ACM Trans Math Softw 31(4): 555–560

    Article  MATH  MathSciNet  Google Scholar 

  11. Gunji T, Kim S, Kojima M, Takeda A, Fujisawa K, Mizutani T (2004) PHoM—a polyhedral homotopy continuation method. Computing 73: 57–77

    Article  MATH  MathSciNet  Google Scholar 

  12. Huber B, Sturmfels B (1995) A polyhedral method for solving sparse polynomial systems. Math Comp 64: 1541–1555

    Article  MATH  MathSciNet  Google Scholar 

  13. Huber B, Verschelde J (1998) Polyhedral end games for polynomial continuation. Numer Algorithms 18(1): 91–108

    Article  MATH  MathSciNet  Google Scholar 

  14. Kim S, Kojima M (2004) Numerical stability of path tracing in polyhedral homotopy continuation methods. Computing 73: 329–348

    Article  MATH  MathSciNet  Google Scholar 

  15. Kuo YC, Li TY (2008) Determining dimension of the solution component that contains a computed zero of a polynomial system. J Math Anal Appl 338(2): 840–851

    Article  MATH  MathSciNet  Google Scholar 

  16. Lee TL, Li TY Mixed volume computation. A revisit (submitted)

  17. Leykin A, Verschelde J, Zhao A (2006) Newton’s method with deflation for isolated singularities of polynomial systems. Theor Comput Sci 359(1–3): 111–122

    Article  MATH  MathSciNet  Google Scholar 

  18. Leykin A, Verschelde J, Zhao A (2007) Evaluation of Jacobian matrices for Newton’s method with deflation to approximate isolated singular solutions of polynomial systems. Symb Numer Comput 269–278

  19. Leykin A, Verschelde J, Zhao A (2008) Higher-order deflation for polynomial systems with isolated singular solutions. In: IMA: algorithms in algebraic geometry, vol 146. Springer, Heidelberg, pp 79–97

  20. Li TY (1997) Numerical solution of multivariate polynomial systems by homotopy continuation methods. Acta Numer 6: 399–436

    Article  Google Scholar 

  21. Li TY (1999) Solving polynomial systems by polyhedral homotopies. Taiwan J Math 3: 251–279

    MATH  Google Scholar 

  22. Li TY (2003) Solving polynomial systems by the homotopy continuation method. Handbook of numerical analysis, vol XI. North-Holland, Amsterdam, pp 209–304

    Google Scholar 

  23. Li TY, Li X (2001) Finding mixed cells in the mixed volume computation. Found Comput Mathem 1: 161–181

    Article  MATH  Google Scholar 

  24. Li TY, Sauer T, Yorke JA (1989) The cheaters homotopy: an efficient procedure for solving systems of polynomial equations. SIAM J Numer Anal 26: 1241–1251

    Article  MATH  MathSciNet  Google Scholar 

  25. Li TY, Zeng Z (2005) A rank-revealing method with updating, downdating, and applications. SIAM J Matrix Anal Appl 26: 918–946

    Article  MATH  MathSciNet  Google Scholar 

  26. Mizutani T, Takeda A, Kojima M (2007) Dynamic enumeration of all mixed cells. Discrete Comput Geom 37: 351–367

    Article  MATH  MathSciNet  Google Scholar 

  27. Morgan AP (1987) Solving polynomial systems using continuation for engineering and scientific problems. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  28. Morgan AP, Sommese AJ (1992) Coefficient-parameter polynomial continuation (Errata: Appl Math Comput 51:207). Appl Math Comput 29: 123–160

    Article  MathSciNet  Google Scholar 

  29. Morgan AP, Sommese AJ, Wampler CW (1992) A power series method for computing singular solutions to nonlinear analytic systems. Numer Math 63(3): 1779–1792

    MathSciNet  Google Scholar 

  30. Noonburg VW (1989) A neural network modeled by an adaptive Lotka–Volterra system. SIAM J Appl Math 49: 1779–1792

    Article  MATH  MathSciNet  Google Scholar 

  31. Sommese A, Verschelde J, Wampler C (2001) Numerical decomposition of the solution sets of polynomial systems into irreducible components. SIAM J Numer Anal 38(6): 2022–2046

    Article  MATH  MathSciNet  Google Scholar 

  32. Sommese A, Wampler C (2005) The numerical solution of polynomial systems arising in engineering and science. World Scientific Publishing, Hackensack

    Google Scholar 

  33. Traverso C The PoSSo test suite at http://www.inria.fr/saga/PO.

  34. Verschelde J (1999) Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans Math Softw 25:251–276. Software available at http://www.math.uic.edu/~jan

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Lee.

Additional information

Research supported in part by NSF under Grant DMS-0811172.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, T.L., Li, T.Y. & Tsai, C.H. HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method. Computing 83, 109–133 (2008). https://doi.org/10.1007/s00607-008-0015-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-008-0015-6

Keywords

Mathematics Subject Classification (2000)

Navigation