Skip to main content
Log in

Rational approximation to the Fermi–Dirac function with applications in density functional theory

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We are interested in computing the Fermi–Dirac matrix function in which the matrix argument is the Hamiltonian matrix arising from density functional theory (DFT) applications. More precisely, we are really interested in the diagonal of this matrix function. We discuss rational approximation methods to the problem, specifically the rational Chebyshev approximation and the continued fraction representation. These schemes are further decomposed into their partial fraction expansions, leading ultimately to computing the diagonal of the inverse of a shifted matrix over a series of shifts. We describe Lanczos and sparse direct methods to address these systems. Each approach has advantages and disadvantages that are illustrated with experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baer, R., Head-Gordon, M.: Chebyshev expansion methods for electronic structure calculations on large molecular systems. J. Chem. Phys. 107, 10003–10013 (1997)

    Article  Google Scholar 

  2. Bekas, C., Kokiopoulou, E., Saad, Y.: An estimator for the diagonal of a matrix. Appl. Numer. Math. 57, 1214–1229 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bekas, C., Kokiopoulou, E., Saad, Y.: Computation of large invariant subspaces using polynomial filtered Lanczos iterations with applications in density functional theory. SIAM J. Matrix Anal. Appl. 30(1), 397–418 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bekas, C., Saad, Y., Tiago, M.L., Chelikowsky, J.R.: Computing charge densities with partially reorthogonalized Lanczos. Comput. Phys. Commun. 171(3), 175–186 (2005)

    Article  Google Scholar 

  5. Benzi, M., Razouk, N.: Decay bounds and O(N) algorithms for approximating functions of sparse matrices. ETNA 28, 16–39 (2007)

    MATH  MathSciNet  Google Scholar 

  6. Carpenter, A.J., Ruttan, A., Varga, R.S.: Extended numerical computations on the 1/9 conjecture in rational approximation theory. In: Lecture Notes in Math., vol. 1105, pp. 383–411. Springer, Berlin (1984)

    Google Scholar 

  7. Cody, W.J., Meinardus, G., Varga, R.S.: Chebyshev rational approximation to \(\exp(-x)\) in [0, + ∞ ) and applications to heat conduction problems. J. Approx. Theory 2, 50–65 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cullum, J., Willoughby, R.A.: Lanczos Algorithms for Large Symmetric Eigenvalue Computations, vols. 1 and 2. Birkhäuser, Boston (1985)

    Google Scholar 

  9. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Method for Sparse Matrices. Clarendon Press, Oxford (1989)

    Google Scholar 

  10. Filipponi, A.: Continued fraction expansion for the X-ray absorption cross section. J. Phys.: Condens. Matter 3, 6489–6507 (1991)

    Article  Google Scholar 

  11. Goedecker, S.: Linear scaling electronic structure methods Rev. Mod. Phys. 71, 1085–1123 (1999)

    Article  Google Scholar 

  12. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore, MD (1996)

    MATH  Google Scholar 

  13. Goncar, A.A., Rakhmanov, E.A.: On the rate of rational approximation of analytic functions. In: Lecture Notes in Math., vol. 1354, pp. 25–42. Springer, Berlin, Heidelberg (1988)

    Google Scholar 

  14. Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19, 1552–1574 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jay, L.O., Kim, H., Saad, Y., Chelikowsky, J.R.: Electronic structure calculations using plane wave codes without diagonalization. Comput. Phys. Commun. 118, 21–30 (1999)

    Article  MATH  Google Scholar 

  16. Kronik, L., Makmal, A., Tiago, M., Alemany, M.M.G., Huang, X., Saad, Y., Chelikowsky, J.R.: PARSEC—The pseudopotential algorithm for real-space electronic structure calculations: recent advances and novel applications to nanostructures. Phys. Stat. Solidi B (Feature Article) 243, 1063–1079 (2006). http://parsec.ices.utexas.edu

    Article  Google Scholar 

  17. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand. 45, 255–282 (1950)

    MathSciNet  Google Scholar 

  18. Larsen, R.M.: Efficient algorithms for Helioseismic inversion. Ph.D. thesis, Dept. Computer Science, University of Aarhus, DK-8000 Aarhus C, Denmark (1998)

  19. Nour-Omid, B.: Applications of the Lanczos algorithm. Comput. Phys. Commun. 53, 157–168 (1989)

    Article  MATH  Google Scholar 

  20. Nour-Omid, B., Clogh, R.W.: Dynamic analysis of structures using Lanczos coordinates. Earthquake Eng. Struct. Dyn. 12, 565–577 (1984)

    Article  Google Scholar 

  21. Ozaki, T.: Continued fraction representation of the Fermi–Dirac function for large-scale electronic structure calculations. Phys. Rev. B 75, 035123(9) (2007)

    Article  Google Scholar 

  22. Paige, C.C.: The computation of eigenvalues and eigenvectors of very large sparse matrices. Ph.D. thesis, London University, Institute of Computer Science, London, England (1971)

  23. Parlett, B.N.: A new look a the Lanczos algorithm for solving symmetric systems of linear equations. Linear Algebra Appl. 29, 323–346 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  24. Haydock, V.H.R., Kelly, M.J.: Electronic structure based on the local atomic environment for tight-binding bands: II. J. Phys.: Solid State Phys. 8, 2591–2605 (1975)

    Article  Google Scholar 

  25. Saad, Y.: SPARSKIT: a basic tool kit for sparse matrix computations. Technical Report RIACS-90-20, Research Institute for Advanced Computer Science, NASA Ames Research Center, Moffett Field, CA (1990)

  26. Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29, 209–228 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Halstead Press, New York (1992)

    MATH  Google Scholar 

  28. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia, PA (2003)

    Book  MATH  Google Scholar 

  29. Sidje, R.B., Stewart, W.J.: A numerical study of large sparse matrix exponentials arising in Markov chains. Comput. Stat. Data Anal. 29(3), 345–368 (1999)

    Article  MATH  Google Scholar 

  30. Sidje, R.B.: EXPOKIT: a software package for computing matrix exponentials. ACM Trans. Math. Softw. 24(1), 130–156 (1998). http://www.expokit.org

    Article  MATH  Google Scholar 

  31. Simon, H.D.: The Lanczos algorithm with partial reorthogonalization. Math. Comput. 42(165), 115–142 (1984)

    Article  MATH  Google Scholar 

  32. Trefethen, L.N.: Rational Chebyshev approximation on the unit disk. Numer. Math. 37(2), 297–320 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  33. Trefethen, L.N., Gutknecht, M.H.: The Carathéodory–Féjer method for real rational approximation. SIAM J. Numer. Anal. 20(2), 420–436 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  34. Varga, R.S.: Scientific computation on mathematical problems and conjectures. In: CBMS-NSF, Regional Conference Series in Applied Mathematics, vol. 60. SIAM, Philadelphia (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger B. Sidje.

Additional information

Work supported by NSF under grant 0325218, by DOE under grant DE-FG02-03ER25585, and by the Minnesota Supercomputing Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidje, R.B., Saad, Y. Rational approximation to the Fermi–Dirac function with applications in density functional theory. Numer Algor 56, 455–479 (2011). https://doi.org/10.1007/s11075-010-9397-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-010-9397-6

Keywords

Navigation