Skip to main content
Log in

Panel clustering method and restriction matrices for symmetric Galerkin BEM

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In the framework of Symmetric Galerkin Boundary Element Method, different techniques in these last years have been proposed to reduce the computational cost of the Galerkin matrix evaluation: in particular, the Panel Clustering Method [25,26] it is now largely used. On the other side, very recently a theory on restriction matrices has been developed to take computational advantage of possible symmetry properties of the differential or integral problem at hand [4,5]. Here we couple Panel Clustering Method with restriction matrices, presenting the most important algorithms employed and showing several examples, comparisons and numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aimi, M. Diligenti and G. Monegato, New numerical integration schemes for applications of Galerkin BEM to 2D problems, Int. J. Numer. Meth. Engng. 40 (1997) 1977–1999.

    Article  Google Scholar 

  2. A. Aimi and M. Diligenti, Numerical integration in 3D Galerkin BEM solution of HBIEs, Comput. Mech. 28 (2002) 233–249.

    Article  Google Scholar 

  3. A. Aimi, M. Diligenti, F. Lunardini and A. Salvadori, A new application of the panel clustering method for 3D SGBEM, CMES 4(1) (2003) 31–49.

    Google Scholar 

  4. A. Aimi, L. Bassotti and M. Diligenti, Groups of congruences and restriction matrices, BIT 43(4) (2003) 671–693.

    Article  Google Scholar 

  5. A. Aimi, M. Diligenti, F. Freddi and A. Salvadori, Restriction matrices for SGBEM applications, Comput. Mech. 32 (2003) 430–444.

    Article  Google Scholar 

  6. A. Aimi and M. Diligenti, Restriction matrices: Algorithms and computational issues, submitted.

  7. E.L. Allgower, K. Georg, R. Miranda and J. Tausch, Numerical exploitation of equivariance, Z. Angew. Math. Mech. 78 (1998) 795–806.

    Article  Google Scholar 

  8. H. Andrä, C. Polizzotto and E. Schnack, A boundary interior element discretization method for the analysis of two- and three-dimensional elastic-plastic structures, in: Finite Inelastic Deformations – Theory and Applications, eds. D. Beskos and F. Stein, IUTAM Symposium, Hannover, Germany (Springer-Verlag, Berlin, 1991) pp. 459–468.

    Google Scholar 

  9. L. Bassotti, Linear operators that are T-invariant with respect to a group of homeomorphims, Russian Math. Surveys 43(1) (1988) 67–101.

    Article  Google Scholar 

  10. M. Bebendorf, Approximation of boundary element matrices, Numer. Math. 86 (2000) 565–589.

    Google Scholar 

  11. M. Bebendorf and S. Rjasanow, Adaptive low-rank approximation of collocation matrices, Computing 70 (2003) 1–24.

    Article  Google Scholar 

  12. R. Bialecki and A.J. Nowak, Boundary value problems in heat conduction with nonlinear material and nonlinear boundary conditions, Appl. Math. Modelling 5 (1981) 417–421.

    Google Scholar 

  13. M. Bonnet, G. Maier and C. Polizzotto, Symmetric Galerkin boundary element method, Appl. Mech. Rev. 51 (1998) 669–704.

    Google Scholar 

  14. M. Bonnet, Exploiting partial or complete geometrical symmetry in 3D symmetric Galerkin indirect BEM formulations, Int. J. Numer. Meth. Engng. 57 (2003) 1053–1083.

    Article  Google Scholar 

  15. A. Bossavit, Boundary value problems with symmetry and their approximation by finite elements, SIAM J. Appl. Math. 53(5) (1993) 1352–1380.

    Article  Google Scholar 

  16. A. Bossavit, On the computation of strains and stresses in symmetrical articulated structures, Lectures in Appl. Math. 29 (1993) 111–123.

    Google Scholar 

  17. G. Chen and J. Zhou, Boundary Element Methods (Academic Press, London, 1992).

    Google Scholar 

  18. M. Costabel and W. Wendland, Strong ellipticity of boundary integral operators, Crelle's J. Reine Angew. Math. 372 (1986) 34–63.

    Google Scholar 

  19. M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results, SIAM J. Math. Anal. 19(3) (1988) 613–626.

    Article  Google Scholar 

  20. M. Diligenti and G. Monegato, Integral evaluation in the BEM solution of (hyper)singular integral equations. 2D problems on polygonal domains, J. Comput. Appl. Math. 81 (1997) 29–57.

    Article  Google Scholar 

  21. C.C. Douglas and B.F. Smith, Using symmetries and antisymmetries to analyze a parallel multigrid algorithm: the elliptic boundary value problem case, SIAM J. Numer. Anal. 26 (1989) 1439–1461.

    Article  Google Scholar 

  22. C.C. Douglas, Some nontelescoping parallel algorithms based on serial multigrid aggregation and disaggregation techniques, in: Multigrid Methods, Lecture Notes in Pure and Appl. Math. vol. 110 (1988) pp. 167–176.

  23. G. Fossa, G. Maier, P. Masarati and G. Novati, Boundary element analysis in the presence of dihedral symmetry under general boundary conditions, in: Proc. 7th Inter. Conf. on Boundary Elements, Como Lake, Italy, A Computational Mechanics Publication (Springer-Verlag, Berlin, 1985).

    Google Scholar 

  24. K. Giebermann, Multilevel approximation of boundary integral operators, Computing 67(3) (2001) 183–207.

    Article  Google Scholar 

  25. K. Giebermann, On the use of addition theorems for panel clustering, Preprint.

  26. W. Hackbusch and Z.P. Nowak, On the fast Matrix multiplication in the boundary element method by panel clustering, Numer. Math. 54 (1989) 463–491.

    Article  Google Scholar 

  27. W. Hackbusch, A sparse matrix arithmetic based on ℋ-matrices. Part I: Introduction to ℋ-matrices, Computing 62(2) (1999) 89–109.

    Article  Google Scholar 

  28. W. Hackbusch and S. Sauter, On the efficient use of the Galerkin method to solve Fredholm integral equations, Appl. Math. 38 (1993) 301–322.

    Google Scholar 

  29. S. Kurz, O. Rain and S. Rjasanow, Application of the adaptive cross approximation technique for the coupled BE-FE solution of symmetric electromagnetic problems, Comput. Mech. 32 (2003) 423–429.

    Article  Google Scholar 

  30. J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I (Springer-Verlag, Berlin, 1972).

    Google Scholar 

  31. J. Lobry and C.H. Broche, Geometrical symmetry in the boundary element method, Engng. Anal. with Bound. Elem. 14 (1994) 229–238.

    Article  Google Scholar 

  32. MATLAB, The Language of Technical Computing, The MathWorks (2000).

  33. F.V. Postel and E.P. Stephan, On the h−, p− and hp version of the boundary element method-numerical results, Comput. Meth. Appl. Mech. Eng. 83 (1990) 69–89.

    Article  Google Scholar 

  34. S.A. Sauter, Variable order panel clustering, Computing 64 (2000) 223–261.

    Article  Google Scholar 

  35. C. Schwab and W. Wendland, Kernel properties and representations of boundary integral operators, Math. Comput. Meth. Appl. Mech. Eng. 83 (1990) 69–89.

    Article  Google Scholar 

  36. J.P. Serre, Linear representations of Finite Groups, Graduate Texts in Mathematics, Vol. 42 (Springer-Verlag, Berlin, 1977).

    Google Scholar 

  37. S. Sirtori, G. Maier, G. Novati and S. Micoli, A Galerkin symmetric boundary element method in elasticity: formulation and implementation, Int. J. Numer. Meth. Engng. 35 (1992) 255–282.

    Article  Google Scholar 

  38. G.F. Smith, Projection operators for symmetric regions, Archive for Rational Mechanics and Analysis 54 (1974) 161–174.

    Article  Google Scholar 

  39. J. Tausch, A generalization of the discrete Fourier transform, in: Exploiting Symmetry in Applied and Numerical Analysis, eds. E.L. Allgower, K. Georg and R. Miranda, Lectures in Applied Mathematics, Vol. 29 (Amer. Math. Soc., Providence, RI, 1993) pp. 405–412.

    Google Scholar 

  40. E. Tyrtyshnikov, Mosaic-skeleton approximations, Calcolo 33 (1996) 47–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Redivo-Zaglia

AMS subject classification

65F30, 65N38

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aimi, A., Diligenti, M. & Lunardini, F. Panel clustering method and restriction matrices for symmetric Galerkin BEM. Numer Algor 40, 355–382 (2005). https://doi.org/10.1007/s11075-005-8136-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-005-8136-x

Keywords

Navigation