Skip to main content
Log in

Nonlinear control of logic structure of all-optical logic devices using soliton interactions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The all-optical logic device is the key component in the all-optical communication system and all-optical computing. The research based on the all-optical logic device is important to improve the communication efficiency. In this paper, using optical solitons, all-optical logic devices are investigated theoretically. Three-soliton solutions are presented through solving the coupled nonlinear Schrödinger equations. The condition for forming all-optical logic devices (AOLDs) is discussed. Besides, the performance of the AOLD is analyzed. Results of this paper have theoretical research significance for the application of the AOLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The authors declare that all data generated or analyzed during this study are included in this article.

References

  1. Taraphdar, C., Chattopadhyay, T., Roy, J.N.: Mach-Zehnder interferometer-based all-optical reversible logic gate. Opt. Laser Technol. 42(2), 249–259 (2009)

    Article  Google Scholar 

  2. Dimitriadou, E., Zoiros, K.E.: All-optical XOR gate using single quantum-dot SOA and optical filter. J. Lightwave Technol. 31(23), 3813–3821 (2013)

    Article  Google Scholar 

  3. Wu, L.M., Yuan, X.X., Ma, D.T., Zhang, Y., Huang, W.C., Ge, Y.Q., Song, Y.F., Xiang, Y.J., Li, J.Q., Zhang, H.: Recent advances of spatial self-phase modulation in 2D Materials and passive photonic device applications. Adv. Sci. 16(35), 2002252 (2020)

    Google Scholar 

  4. Jandieri, V., Khomeriki, R., Onoprishvili, T., Erni, D., Chotorlishvili, L., Werner, D.H., Berakdar, J.: Band-gap solitons in nonlinear photonic crystal waveguides and their application for functional all-optical logic gating. Nat. Photon. 8(7), 250 (2021)

    Article  Google Scholar 

  5. Liu, W.J., Yang, D.Q., Shen, G.S., Tian, H.P., Ji, Y.F.: Design of ultra compact all-optical XOR, XNOR, NAND and OR gates using photonic crystal multi-mode interference waveguides. Opt. Laser Technol. 50, 55–64 (2013)

    Article  Google Scholar 

  6. Silvi, S., Constable, E.C., Housecroft, C.E., Beves, J.E., Dunphy, E.L., Tomasulo, M., Raymo, F.M., Credi, A.: All-optical integrated logic operations based on chemical communication between molecular switches. Chem. Eur. J. 15(1), 178–185 (2009)

    Article  Google Scholar 

  7. Pal, A., Ahmed, M.Z., Swarnakar, S.: An optimized design of all-optical XOR, OR, and NOT gates using plasmonic waveguide. Opt. Quantum Electron. 53(2), 84 (2021)

    Article  Google Scholar 

  8. Zhang, Y.B., Murata, M., Takagi, H., Ji, Y.S.: Traffic-based reconfiguration for logical topologies in large-scale WDM optical networks. J. Lightwave Technol. 23(10), 2854–2867 (2005)

    Article  Google Scholar 

  9. Chen, Y., Cheng, Y.K., Zhu, R.B., Wang, F.F., Cheng, H.T., Liu, Z.H., Fan, C.X., Xue, Y.X., Yu, Z.C., Zhu, J.K., Hu, X.Y., Gong, Q.H.: Nanoscale all-optical logic devices. Sci. China-Phys. Mech. Astron. 62(4), 044201 (2019)

  10. Wu, Y.D., Chen, M.H., Chu, C.H.: All-optical logic device using bent nonlinear tapered Y-junction waveguide structure. Fiber Integrated Opt. 20(5), 527–524 (2001)

    Article  Google Scholar 

  11. Saidani, N., Belhadj, W., Abdelmalek, F.: Novel all-optical logic gates based photonic crystal waveguide using self imaging phenomena. Opt. Quantum Electron. 47(7), 1829–1846 (2015)

    Article  Google Scholar 

  12. Goswami, K., Mondal, H., Sen, M.: A review on all-optical logic adder: Heading towards next-generation processor. Opt. Commun. 483, 126668 (2021)

  13. Yahalomi, E.M.: All-optical devices based on three-wave mixing for logic and information processing. Laser Part Beams. 19(2), 215–218 (2001)

    Article  Google Scholar 

  14. Lovkesh, Sharma, V., Singh, S.: The design of a reconfigurable all-optical logic device based on cross-phase modulation in a highly nonlinear fiber. J. Comput. Electron. 20(1), 397-408 (2021)

  15. Wazwaz, A.M.: Bright and dark optical solitons for (3+1)-dimensional Schrödinger equation with cubic-quintic-septic nonlinearities. Optik 225, 165752 (2020)

  16. Wazwaz, A.M.: New integrable (2+1)-dimensional sine-Gordon equations with constant and time-dependent coefficients: Mult. Opt. Kink. Wave Sol. Optik. 216, 164640 (2020)

  17. Wazwaz, A.M.: Multiple optical kink solutions for new Painlevé integrable (3+1)-dimensional sine-Gordon equations with constant and time-dependent coefficients. Optik 219, 165003 (2020)

  18. Wazwaz, A.M.: Higher dimensional nonlinear Schrödinger equations in anomalous dispersion and normal dispersive regimes: Bright and dark optical solitons. Optik 222, 165327 (2020)

  19. Wu, Y.D.: New all-optical switch based on the spatial soliton repulsion. Opt. Express 14(9), 4005–4012 (2006)

    Article  Google Scholar 

  20. Ghadi, A., Sohrabfar, S.: All-optical multiple logic gates based on spatial optical soliton interactions. IEEE Photon. Technol. Lett. 30(6), 569–572 (2018)

    Article  Google Scholar 

  21. Khawaja, U., Al-Marzoug, S.M., Bahlouli, H.: All-optical switches, unidirectional flow, and logic gates with discrete solitons in waveguide arrays. Opt. Express 24(10), 11062–11074 (2016)

    Article  Google Scholar 

  22. Bigo, S., Leclerc, O., Desurvire, E.: All-optical fiber signal processing and regeneration for soliton communications. IEEE J. Sel. Top. Quant. 3(5), 1208–1223 (1997)

    Article  Google Scholar 

  23. Wang, L.L., Liu, W.J.: Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system. Chin. Phys. B 29(7), 070502 (2020)

  24. Yan, Y.Y., Liu, W.J.: Soliton rectangular pulses and bound states in a dissipative system modeled by the variable-coefficients complex cubic-quintic Ginzburg-Landau equation. Chin. Phys. Lett. 38(9), 094201 (2021)

  25. Li, W.Y., Ma, G.L., Yu, W.T., Zhang, Y.J., Liu, M.L., Yang, C.Y., Liu, W.J.: Soliton structures in the (1+1)-dimensional Ginzburg-Landau equation with a parity-time-symmetric potential in ultrafast optics. Chin. Phys. B 27(3), 030504 (2018)

  26. Liu, W.J., Yang, C.Y., Liu, M.L., Yu, W.T., Zhang, Y.J., Lei, M., Wei, Z.Y.: Bidirectional all-optical switches based on highly nonlinear optical fibers. EPL 118(3), 34004 (2017)

    Article  Google Scholar 

  27. Liu, W.J., Zhang, Y.J., Pang, L.H., Yan, H., Ma, G.L., Lei, M.: Study on the control technology of optical solitons in optical fibers. Nonlinear Dyn. 86(2), 1069–1073 (2016)

    Article  Google Scholar 

  28. Liu, W.J., Lei, M.: All-optical switches using solitons within nonlinear fibers. J. Electromagnet Wave. 27(18), 2288–2297 (2013)

    Article  Google Scholar 

  29. Longobucco, M., Cimek, J., Pysz, D., Buczynski, R., Bugar, I.: All-optical switching of ultrafast solitons at 1560 nm in dual-core fibers with high contrast of refractive index. Opt. Fiber Technol. 63, 102514 (2021)

  30. Ghadi, A.: Phase sensitive, all-optical and self-integrated multi-logic AND, OR, XOR, and NOT gates. Phys. Lett. A 384(22), 126432 (2020)

  31. Anbardan, S.R., Eslami, M., Kheradmand, R.: Fast and localized all-optical frequency switch based on synchronization of cavity solitons: A numerical study. Opt. Commun. 474, 126093 (2020)

  32. Mandal, B., Chowdhury, A.R.: Compression splitting and switching of bright and dark solitons in nonlinear directional coupler. Chaos Soliton Fract. 27, 103–113 (2006)

    Article  Google Scholar 

  33. Fraga, W.B., Menezes, J.W.M., Silva, M.G.: Logic gates based in asymmetric couplers: Numerical analysis. Fiber Integrated Opt. 26(4), 217–228 (2007)

    Article  Google Scholar 

  34. Liu, M., Chiang, S.K.: Nonlinear switching of ultrashort pulses in multicore fibers. IEEE J. Quantum Electron. 47(12), 1499-1505 (2011)

  35. Ding, C.C., Gao, Y.T., Su, J.J., Deng, G.F., Jia, S.L.: Vector semirational rogue waves for the coupled nonlinear Schrödinger equations with the higher-order effects in the elliptically birefringent optical fiber. Wave Random Complex. 30, 1483092 (2018)

    Google Scholar 

  36. Du, Z., Tian, B., Chai, H.P., Zhao, X.H.: Dark-bright semi-rational solitons and breathers for a higher-order coupled nonlinear Schrödinger system in an optical fiber. Appl. Math. Lett. 102, 106110 (2020)

  37. Wang, T.Y., Zhou, Q., Liu, W.J.: Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers. Chin. Phys. B https://doi.org/10.1088/1674-1056/ac2d22 (2021)

  38. Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14(7), 805–809 (1973)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (grant 11975172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Ethical approval

The authors declare that they have adhered to the ethical standards of research execution.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Wang, T., Biswas, A. et al. Nonlinear control of logic structure of all-optical logic devices using soliton interactions. Nonlinear Dyn 107, 1215–1222 (2022). https://doi.org/10.1007/s11071-021-07027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07027-5

Keywords

Navigation