Skip to main content
Log in

Initial-offset-boosted coexisting hyperchaos in a 2D memristive Chialvo neuron map and its application in image encryption

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Designing a low-dimensional discrete map to generate chaotic sequence with the properties of high randomness and without chaos degradation is an attractive but challenging issue. The hyperchaotic dynamics of a low-dimensional discrete map can effectively solve this issue. To hit the issue, this paper introduces a memristor with sinusoidal mem-conductance function and hyper-tangent function modulated input into the one-dimensional (1D) Chialvo neuron map, thereby builds a two-dimensional (2D) memristive Chialvo neuron map with hyperchaotic dynamics. The stability and dynamical behaviors are disclosed by theoretical analysis and numerical simulation. Interestingly, the 2D memristive Chialvo neuron map can generate initial-offset boosting behavior. The forming mechanism of initial-offset boosting behavior is theoretically investigated. The results show that homogenous coexisting chaotic/hyperchaotic attractors can be regulated along memristor variable axis and boosted with the same periodicity of the sine mem-conductance. Besides, the homogenous coexisting chaotic/hyperchaotic attractors are experimentally captured on a FPGA-based digital platform. What’s more, a new encrypt algorithm is designed by employing the hyperchaotic sequences to encrypt an image. The multiple indicators and National Institute of Standards and Technology (NIST) test results show that the hyperchaotic sequences and encryption algorithm display good performance in image encryption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated during the current study.

References

  1. Naoki, A., Nicolas, C., André, R., Kazutaka, K., Atsushi, U., Tomoaki, N., Satoshi, S., Ryoichi, H., Makoto, N.: Analysis of temporal structure of laser chaos by Allan variance. Phys. Rev. E 107(1), 014211 (2023)

    Google Scholar 

  2. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569–1578 (2017)

    MathSciNet  Google Scholar 

  3. Ma, J.: Biophysical neurons, energy and synapse controllability, a review. J. Zhejiang Univ. Sci. A 24(2), 109–129 (2023)

    Google Scholar 

  4. Xu, Q., Tan, X., Zhu, D., Bao, H., Hu, Y., Bao, B.: Bifurcations to bursting and spiking in the Chay neuron and their validation in a digital circuit. Chaos Solitons Fractals 141, 110353 (2020)

    MathSciNet  Google Scholar 

  5. Stanković, B., Čupić, Ž, Maćešić, S., Pejić, N., Kolar-Anić, L.: Complex bifurcations in the oscillatory reaction model. Chaos Solitons Fractals 87, 84–91 (2016)

    MathSciNet  Google Scholar 

  6. An, X., Zhang, L.: Dynamics analysis and Hamilton energy control of a generalized Lorenz system with hidden attractor. Nonlinear Dyn. 94(4), 2995–3010 (2018)

    Google Scholar 

  7. Kengne, J.: On the dynamics of Chua’s oscillator with smooth cubic nonlinearity: occurrence of multiple attractors. Nonlinear Dyn. 87(1), 363–375 (2017)

    Google Scholar 

  8. Shepelev, I., Bukh, A., Ruschel, S., Yanchuk, S., Vadivasove, T.: Local sensitivity of spatiotemporal structures. Nonlinear Dyn. 94(1), 1019–1027 (2018)

    Google Scholar 

  9. Gao, X., Sun, B., Cao, Y., Banerjee, S., Mou, J.: A color image encryption algorithm based on hyperchaotic map and DNA mutation. Chin. Phys. B 32(3), 030501 (2023)

    Google Scholar 

  10. Yu, F., Xu, S., Xiao, X., Yao, W., Huang, Y., Cai, S., Yin, B., Li, Y.: Dynamics analysis, FPGA realization and image encryption application of a 5D memristive exponential hyperchaotic system. Integration 90, 58–70 (2023)

    Google Scholar 

  11. An, X., Xiong, L., Shi, Q.: Dynamics explore of an improved HR neuron model under electromagnetic radiation and its applications. Nonlinear Dyn. 111(10), 9509–9535 (2023)

    Google Scholar 

  12. Lin, H., Wang, C., Cui, L., Sun, Y., Xu, C., Yu, F.: Brain-like initial-boosted hyperchaos and application in biomedical image encryption. IEEE Trans. Ind. Inform. 18(12), 8839–8850 (2022)

    Google Scholar 

  13. Milad, M., Naser, P.: An application of adaptive synchronization of uncertain chaotic system in secure communication systems. Int. J. Model. Simul. 42(1–2), 143–152 (2022)

    Google Scholar 

  14. Wieczorek, P., Golofit, K.: True random number generator based on flip-flop resolve time instability boosted by random chaotic source. IEEE Trans. Circuits Syst. I 65(4), 1279–1292 (2018)

    Google Scholar 

  15. Zheng, J., Hu, H., Xia, X.: Applications of symbolic dynamics in counteracting the dynamical degradation of digital chaos. Nonlinear Dyn. 94(2), 1535–1546 (2018)

    Google Scholar 

  16. Hua, Z., Zhou, Y., Huang, H.: Cosine-transform-based chaotic system for image encryption. Informat. Sci. 480, 403–419 (2019)

    Google Scholar 

  17. Hua, Z., Zhou, B., Zhou, Y.: Sine chaotification model for enhancing chaos and its hardware implementation. IEEE Trans. Ind. Electron. 66(2), 1273–1284 (2019)

    MathSciNet  Google Scholar 

  18. Shen, C., Yu, S., Lü, J., Chen, G.: Designing hyperchaotic systems with any desired number of positive Lyapunov exponents via a simple model. IEEE Trans. Circuits Syst. I 61(8), 2380–2389 (2014)

    Google Scholar 

  19. Wang, F., Wang, R., Iu, H., Liu, C., Fernando, T.: A novel multi-shape chaotic attractor and it FPGA implementation. IEEE Trans. Circuits Syst. II 66(12), 2062–2066 (2019)

    Google Scholar 

  20. Wang, M., An, M., Zhang, X., Iu, H.: Two-variable boosting bifurcation in a hyperchaotic map and its hardware implementation. Nonlinear Dyn. 111(2), 1871–1889 (2023)

    Google Scholar 

  21. Deng, Y., Li, Y.: Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map. Chaos Solitons Fractals 150, 111064 (2021)

    MathSciNet  Google Scholar 

  22. Naskar, P., Bhattacharyya, S., Nandy, D., Chaudhuri, A.: A robust encryption scheme using chaotic tent map and cellular automata. Nonlinear Dyn. 100(3), 2877–2898 (2020)

    MATH  Google Scholar 

  23. Naskar, P., Bhattacharyya, S., Mahatab, K., Dhal, K., Chaudhuri, A.: An efficient block-level image encryption scheme based on multi-chaotic maps with DNA encoding. Nonlinear Dyn. 105(4), 3673–3698 (2021)

    Google Scholar 

  24. Lai, Q., Lai, C., Zhang, H., Li, C.: Hidden coexisting hyperchaos of new memristive neuron model and its application in image encryption. Chaos Solitons Fractals 158, 112017 (2022)

    MathSciNet  Google Scholar 

  25. Bao, H., Li, H., Hua, Z., Xu, Q., Bao, B.: Sine-transform-based memristive hyperchaotic model with hardware implementation. IEEE Trans. Ind. Informat. 19(3), 2792–2801 (2023)

    Google Scholar 

  26. Xu, S., Ren, J., Ji’e, M., Duan, S., Wang, L.: Application of reservoir computing based on a 2D hyperchaotic discrete memristive map in efficient temporal signal processing. Int. J. Bifurc. Chaos 33(06), 2330015 (2023)

    MathSciNet  Google Scholar 

  27. Liu, X., Mou, J., Zhang, Y., Cao, Y.: A new hyperchaotic map based on discrete memristor and meminductor: dynamics analysis, encryption application, and DSP implementation. IEEE Trans. Ind. Electron. (2023). https://doi.org/10.1109/TIE.2023.3281687

    Article  Google Scholar 

  28. Mehrabbeik, M., Parastesh, F., Ramadoss, J., Rajagopal, K., Namazi, H., Jafari, S.: Synchronization and chimera states in the network of electrochemically coupled memristive Rulkov neuron maps. Math. Biosci. Eng. 18(6), 9394–9409 (2021)

    MATH  Google Scholar 

  29. Li, K., Bao, H., Li, H., Ma, J., Hua, Z., Bao, B.: Memristive Rulkov neuron model with magnetic induction effects. IEEE Trans. Ind. Informat. 18(3), 1726–1736 (2022)

    Google Scholar 

  30. Bao, B., Hu, J., Cai, J., Zhang, X., Bao, H.: Memristor-induced mode transitions and extreme multistability in a map-based neuron model. Nonlinear Dyn. 111(4), 3765–3779 (2023)

    Google Scholar 

  31. Lu, Y., Wang, C., Deng, Q., Xu, C.: The dynamics of a memristor-based Rulkov neuron with fractional-order difference. Chin. Phys. B 31, 060502 (2022)

    Google Scholar 

  32. Vivekanandhan, G., Natiq, H., Merrikhi, Y., Rajagopal, K., Jafari, S.: Dynamical analysis and synchronization of a new memristive Chialvo neuron model. Electronics 12(3), 545 (2023)

    Google Scholar 

  33. Xu, Q., Liu, T., Feng, C., Bao, H., Wu, H., Bao, B.: Continuous non-autonomous memristive Rulkov model with extreme multistability. Chin. Phys. B 30(12), 128702 (2021)

    Google Scholar 

  34. Lai, Q., Liang, Y., Liu, Y.: Design and realization of discrete memristive hyperchaotic map with application in image encryption. Chaos Solitons Fractals 165, 112781 (2022)

    MATH  Google Scholar 

  35. Chialvo, D.: Generic excitable dynamics on a two-dimensional map. Chaos Solitons Fractals 5(3–4), 461–479 (1995)

    MATH  Google Scholar 

  36. Jing, Z., Yang, J., Feng, W.: Bifurcation and chaos in neural excitable system. Chaos, Solitons Fractals 27(1), 197–215 (2006)

    MathSciNet  MATH  Google Scholar 

  37. Wang, F., Cao, H.: Mode locking and quasiperiodicity in a discrete-time Chialvo neuron model. Commun. Nonlinear Sci. Numer. Simulat. 56, 481–489 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Bashkirtseva, I., Ryashko, L., Used, J., Seoane, J., Sanjuán, M.: Noise-induced complex dynamics and synchronization in the map-based Chialvo neuron model. Commun. Nonlinear Sci. Numer. Simul. 116, 106867 (2023)

    MathSciNet  MATH  Google Scholar 

  39. Roy, M., Poria, S.: Enhancement of synchronized chaotic state in a delay-coupled complex neuronal network. Nonlinear Dyn. 101(2), 745–758 (2020)

    Google Scholar 

  40. Courbage, M., Nekorkin, V.: Map based models in neurodynamics. Int. J. Bifurc. Chaos 20(6), 1631–1651 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Yang, Y., Ma, J., Xu, Y., Jia, Y.: Energy dependence on discharge model of Izhikevich neuron driven by external stimulus under electromagnetic induction. Cogn. Neurodyn. 15, 265–277 (2021)

    Google Scholar 

  42. Ramasamy, M., Devarajan, S., Kumarasamy, S., Rajagopal, K.: Effect of higher-order interactions on synchronization of neuron models with electromagnetic induction. Appl. Math. Comput. 434, 127447 (2022)

    MathSciNet  MATH  Google Scholar 

  43. Wouapi, M., Fotsin, B., Ngouonkadi, E., Kemwoue, F., Njitacke, Z.: Complex bifurcation analysis and synchronization optimal control for Hindmarsh-Rose neuron model under magnetic flow effect. Cogn. Neurondyn. 15, 315–347 (2021)

    Google Scholar 

  44. Xu, Q., Ju, Z., Ding, S., Feng, C., Chen, M., Bao, B.: Electromagnetic induction effects on electrical activity within a memristive Wilson neuron model. Cogn. Neurodyn. 16, 1221–1231 (2022)

    Google Scholar 

  45. Panahi, S., Jafari, S., Khalaf, A., Rajagopal, K., Pham, V., Alsaadi, F.: Complete dynamical analysis of a neuron under magnetic flow effect. Chin. J. Phys. 56(5), 2254–2264 (2018)

    Google Scholar 

  46. Rajagopal, K., Moroz, I., Karthikeyan, A., Duraisamy, P.: Wave propagation in a network of extended Morris-Lecar neurons with electromagnetic induction and its local kinetics. Nonlinear Dyn. 100(4), 3625–3644 (2020)

    Google Scholar 

  47. Fan, W., Chen, X., Wang, Y., Chen, B., Wu, H., Xu, Q.: Hidden firing patterns and memristor initial condition-offset boosting behavior in a memristive Hindmarsh–Rose neuron model. Front. Phys. 11, 1160419 (2023)

    Google Scholar 

  48. Gu, H., Pan, B., Chen, G., Duan, L.: Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn. 78(1), 391–407 (2014)

    MathSciNet  Google Scholar 

  49. Xu, Q., Ding, S., Bao, H., Chen, M., Bao, B.: Piecewise-linear simplification for adaptive synaptic neuron model. IEEE Trans. Circuits Syst. II. 69(3), 1832–1836 (2022)

    Google Scholar 

  50. Xu, Q., Zhu, D.: FPGA-based experimental validations of electrical activities in two adjacent FitzHugh-Nagumo neurons coupled by memristive electromagnetic induction. IETE Tech. Rev. 38(6), 563–577 (2020)

    Google Scholar 

  51. Jin, M., Sun, K., Wang, H.: Hyperchaos, extreme multistability, and hidden attractors in the novel complex nonlinear system and its adaptive hybrid synchronization. Nonlinear Dyn. 110(4), 3853–3867 (2022)

    Google Scholar 

  52. Xu, Q., Wang, Y., Chen, B., Li, Z., Wang, N.: Firing pattern in a memristive Hodgkin-Huxley circuit: Numerical simulation and analog circuit validation. Chaos Solitons Fractals 172, 113627 (2023)

    MathSciNet  Google Scholar 

  53. Gu, S., He, S., Wang, H., Du, B.: Analysis of three types of initial offset-boosting behavior for a new fractional-order dynamical system. Chaos Solitons Fractals 143, 110613 (2021)

    Google Scholar 

  54. Zhang, S., Li, C., Zheng, J., Wang, X., Zeng, Z., Peng, X.: Generating any number of initial-offset-boosted coexisting Chua’s double-scroll attractors via piecewise-nonlinear memristor. IEEE Trans. Ind. Electron. 69(7), 7202–7212 (2022)

    Google Scholar 

  55. Li, Y., Li, C., Liu, S., Lei, T., Jiang, Y.: An initially-controlled double-scroll hyperchaotic map. Int. J. Bifurc. Chaos 32(08), 2250119 (2022)

    MathSciNet  MATH  Google Scholar 

  56. Xu, Q., Liu, T., Ding, S., Wu, H., Huang, L., Chen, B.: Extreme multistability and phase synchronization in a heterogeneous bi-neuron Rulkov network with memristive electromagnetic induction. Cogn. Neurodyn. 17, 755–766 (2023)

    Google Scholar 

  57. Ding, S., Wang, N., Bao, H., Chen, B., Wu, H., Xu, Q.: Memristor synapse-coupled piecewise-linear simplified Hopfield neural network: Dynamics analysis and circuit implementation. Chaos Solitons Fractals 166, 112899 (2023)

    MathSciNet  Google Scholar 

  58. Wang, N., Xu, D., Kuznetsov, N., Bao, H., Chen, M., Xu, Q.: Experimental observation of hidden Chua’s attractor. Chaos Solitons Fractals 170, 113427 (2023)

    MathSciNet  Google Scholar 

  59. Deng, Y., Li, Y.: Nonparametric bifurcation mechanism in 2-D hyperchaotic discrete memristor-based map. Nonlinear Dyn. 104(4), 4601–4614 (2021)

    Google Scholar 

  60. Haghiri, S., Naderi, A., Ghanbari, B., Ahmadi, A.: High speed and low digital resources implementation of Hodgkin–Huxley neuronal model using base-2 functions. IEEE Trans. Circuits Syst. I 68(1), 275–287 (2021)

    MathSciNet  Google Scholar 

  61. Imani, M., Ahmadi, A., Malekshahi, M., Haghiri, S.: Digital multiplierless realization of coupled Wilson neuron model. IEEE Trans. Biomed. Circuits Syst. 12(6), 1431–1439 (2018)

    Google Scholar 

  62. Xu, Q., Chen, X., Chen, B., Wu, H., Li, Z., Bao, H.: Dynamical analysis of an improved FitzHugh–Nagumo neuron model with multiplier-free implementation. Nonlinear Dyn. 111(9), 8737–8749 (2023)

    Google Scholar 

  63. Xu, Q., Wang, Y., Iu, H., Wang, N., Bao, H.: Locally active memristor based neuromorphic circuit: firing pattern and hardware experiment. IEEE Trans. Circuits Syst. I 70(8), 3130–3141 (2023)

    Google Scholar 

  64. Yu, F., Zhang, Z., Shen, H., Huang, Y., Cai, S., Du, S.: FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient. Chin. Phys. B. 31(2), 020505 (2022)

    Google Scholar 

  65. Gao, X., Mou, J., Banerjee, S., Zhang, Y.: Color-gray multi-image hybrid compression–encryption scheme based on BP neural network and knight tour. IEEE Trans. Cybern. (2023). https://doi.org/10.1109/TCYB.2023.3267785

    Article  Google Scholar 

  66. Li, C., Zhou, Y., Li, H., Feng, W., Du, J.: Image encryption scheme with bit-level scrambling and multiplication diffusion. Multimedia Tools Appl. 80, 18479–18501 (2021)

    Google Scholar 

  67. Enayatifar, R., Abdullah, A., Isnin, I., Altameem, A., Lee, M.: Image encryption using a synchronous permutation–diffusion technique. Opt. Laser. Eng. 90, 146–154 (2017)

    Google Scholar 

  68. Patro, K., Soni, A., Netam, P., Acharya, B.: Multiple grayscale image encryption using cross-coupled chaotic maps. J. Inf. Secur. Appl. 52, 102470 (2020)

    Google Scholar 

  69. Tang, Z., Song, J., Zhang, X., Sun, R.: Multiple-image encryption with bit-plane decomposition and chaotic maps. Opt. Laser. Eng. 80, 1–11 (2016)

    Google Scholar 

  70. Lin, R., Li, S.: An image encryption scheme based on Lorenz hyperchaotic system and RSA algorithm. Secur. Commun. Netw. 2021, 5586959 (2021)

    Google Scholar 

  71. Pareschi, F., Rovatti, R., Setti, G.: On statistical tests for randomness included in the NIST SP800-22 test suite and based on the binomial distribution. IEEE Trans. Inf. Forensics Secur. 7, 491–505 (2012)

    Google Scholar 

  72. Naskar, P., Bhattacharyya, S., Chaudhuri, A.: An audio encryption based on distinct key blocks along with PWLCM and ECA. Nonlinear Dyn. 103(2), 2019–2042 (2021)

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant 12172066 and Grant 52277001, the 333 Project of Jiangsu Province of China, the Qinglan Project of Jiangsu Province of China, and the Postgraduate Research and Practice Innovation Program of Jiangsu Province, China under Grant No. KYCX23_3180.

Author information

Authors and Affiliations

Authors

Contributions

QX: writing—original draft. LH: conceptualization, formal analysis, hardware experiment. NW: software, writing—review and editing. HB: hardware experiment. HW: writing—review and editing. M. Chen: Methodology, Project administration, Writing,—review and editing.

Corresponding author

Correspondence to Mo Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Huang, L., Wang, N. et al. Initial-offset-boosted coexisting hyperchaos in a 2D memristive Chialvo neuron map and its application in image encryption. Nonlinear Dyn 111, 20447–20463 (2023). https://doi.org/10.1007/s11071-023-08905-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08905-w

Keywords

Navigation