Skip to main content
Log in

Design of a new quasi-zero-stiffness isolator system with nonlinear positive stiffness configuration and its novel features

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A quasi-zero-stiffness (QZS) isolator with the new design of positive stiffness configuration is proposed in this paper. The positive stiffness configuration, composed of a pair of torsion springs, oblique bars and linear bearings, exhibits beneficial nonlinearity. In parallel with the negative stiffness provided by the oblique bars connected to linear springs in the direction perpendicular to motion, it can expand the effective displacement range of QZS. In the static analysis, the force and stiffness of the system are derived. A nonlinear optimization is also conducted to determine the structural parameters. The dynamic characteristics are then analyzed through the Lagrange’s equation and averaging method. The displacement transmissibility is investigated through a numerical simulation. The results indicate a much better vibration isolation performance of the present design than that of the previous QZS isolator with the linear positive stiffness element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

All data and codes generated during this study are included in the supplementary information files.

References

  1. Wang, X., Liu, H., Chen, Y., Gao, P.: Beneficial stiffness design of a high-static-low-dynamic-stiffness vibration isolator based on static and dynamic analysis. Int. J. Mech. Sci. 142–143, 235–244 (2018). https://doi.org/10.1016/j.ijmecsci.2018.04.053

    Article  Google Scholar 

  2. Liu, C., Yu, K.: A high-static–low-dynamic-stiffness vibration isolator with the auxiliary system. Nonlinear Dyn. 94, 1549–1567 (2018). https://doi.org/10.1007/s11071-018-4441-5

    Article  Google Scholar 

  3. Bian, J., Jing, X.: Analysis and design of a novel and compact X-structured vibration isolation mount (X-Mount) with wider quasi-zero-stiffness range. Nonlinear Dyn. 101, 2195–2222 (2020). https://doi.org/10.1007/s11071-020-05878-y

    Article  Google Scholar 

  4. Zhao, F., Ji, J.C., Ye, K., Luo, Q.: Increase of quasi-zero stiffness region using two pairs of oblique springs. Mech. Syst. Signal Process. (2020). https://doi.org/10.1016/j.ymssp.2020.106975

    Article  Google Scholar 

  5. Deng, T., Wen, G., Ding, H., Lu, Z.Q., Chen, L.Q.: A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck. Mech. Syst. Signal Process. (2020). https://doi.org/10.1016/j.ymssp.2020.106967

    Article  Google Scholar 

  6. Li, M., Cheng, W., Xie, R.: A quasi-zero-stiffness vibration isolator using a cam mechanism with user-defined profile. Int. J. Mech. Sci. (2021). https://doi.org/10.1016/j.ijmecsci.2020.105938

    Article  Google Scholar 

  7. Le, T.D., Ahn, K.K.: A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat. J. Sound Vib. 330, 6311–6335 (2011). https://doi.org/10.1016/j.jsv.2011.07.039

    Article  Google Scholar 

  8. Ding, H., Ji, J., Chen, L.Q.: Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics. Mech. Syst. Signal Process. 121, 675–688 (2019). https://doi.org/10.1016/j.ymssp.2018.11.057

    Article  Google Scholar 

  9. Zhu, G.N., Liu, J.Y., Cao, Q.J., Cheng, Y.F., Lu, Z.C., Zhu, Z.B.: A two degree of freedom stable quasi-zero stiffness prototype and its applications in aseismic engineering. Sci. China Technol. Sci. 63, 496–505 (2020). https://doi.org/10.1007/s11431-018-9524-2

    Article  Google Scholar 

  10. Alsbushov, B.: Vibration Protecting and Measuring Systems with Quasi-Sero Stiffness. Hemisphere publishing corporation, New York (1989)

    Google Scholar 

  11. Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301, 678–689 (2007). https://doi.org/10.1016/j.jsv.2006.10.011

    Article  Google Scholar 

  12. Carrella, A., Brennan, M.J., Kovacic, I., Waters, T.P.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322, 707–717 (2009). https://doi.org/10.1016/j.jsv.2008.11.034

    Article  Google Scholar 

  13. Carrella, A., Brennan, M.J., Waters, T.P., Lopes, V.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55, 22–29 (2012). https://doi.org/10.1016/j.ijmecsci.2011.11.012

    Article  Google Scholar 

  14. Gatti, G., Kovacic, I., Brennan, M.J.: On the response of a harmonically excited two degree-of-freedom system consisting of a linear and a nonlinear quasi-zero stiffness oscillator. J. Sound Vib. 329, 1823–1835 (2010). https://doi.org/10.1016/j.jsv.2009.11.019

    Article  Google Scholar 

  15. Zhao, F., Ji, J., Ye, K., Luo, Q.: An innovative quasi-zero stiffness isolator with three pairs of oblique springs. Int. J. Mech. Sci. (2021). https://doi.org/10.1016/j.ijmecsci.2020.106093

    Article  Google Scholar 

  16. Lan, C.C., Yang, S.A., Wu, Y.S.: Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads. J. Sound Vib. 333, 4843–4858 (2014). https://doi.org/10.1016/j.jsv.2014.05.009

    Article  Google Scholar 

  17. Lu, Z., Brennan, M.J., Chen, L.Q.: On the transmissibilities of nonlinear vibration isolation system. J. Sound Vib. 375, 28–37 (2016). https://doi.org/10.1016/j.jsv.2016.04.032

    Article  Google Scholar 

  18. Wang, K., Zhou, J., Chang, Y., Ouyang, H., Xu, D., Yang, Y.: A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism. Nonlinear Dyn. 101, 755–773 (2020). https://doi.org/10.1007/s11071-020-05806-0

    Article  Google Scholar 

  19. Liu, C., Yu, K.: Superharmonic resonance of the quasi-zero-stiffness vibration isolator and its effect on the isolation performance. Nonlinear Dyn. 100, 95–117 (2020). https://doi.org/10.1007/s11071-020-05509-6

    Article  Google Scholar 

  20. Yang, J., Xiong, Y.P., Xing, J.T.: Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism. J. Sound Vib. 332, 167–183 (2013). https://doi.org/10.1016/j.jsv.2012.08.010

    Article  Google Scholar 

  21. Huang, X., Liu, X., Sun, J., Zhang, Z., Hua, H.: Effect of the system imperfections on the dynamic response of a high-static-low-dynamic stiffness vibration isolator. Nonlinear Dyn. 76, 1157–1167 (2014). https://doi.org/10.1007/s11071-013-1199-7

    Article  MathSciNet  Google Scholar 

  22. Huang, X., Liu, X., Hua, H.: Effects of stiffness and load imperfection on the isolation performance of a high-static-low-dynamic-stiffness non-linear isolator under base displacement excitation. Int. J. Non. Linear. Mech. 65, 32–43 (2014). https://doi.org/10.1016/j.ijnonlinmec.2014.04.011

    Article  Google Scholar 

  23. Liu, X., Huang, X., Hua, H.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 332, 3359–3376 (2013). https://doi.org/10.1016/j.jsv.2012.10.037

    Article  Google Scholar 

  24. Huang, X., Chen, Y., Hua, H., Liu, X., Zhang, Z.: Shock isolation performance of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: Theoretical and experimental study. J. Sound Vib. 345, 178–196 (2015). https://doi.org/10.1016/j.jsv.2015.02.001

    Article  Google Scholar 

  25. Zhao, L., Yu, Y., Zhou, C., Yang, F.: Modelling and validation of a seat suspension with rubber spring for off-road vehicles. JVC/J. Vib. Control. 24, 4110–4121 (2018). https://doi.org/10.1177/1077546317719348

    Article  Google Scholar 

  26. Cheng, C., Li, S., Wang, Y., Jiang, X.: Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping. Nonlinear Dyn. 87, 2267–2279 (2017). https://doi.org/10.1007/s11071-016-3188-0

    Article  Google Scholar 

  27. Zhang, L., Zhao, C., Qian, F., Dhupia, J.S., Wu, M.: A variable parameter ambient vibration control method based on quasi-zero stiffness in robotic drilling systems. Machines. (2021). https://doi.org/10.3390/machines9030067

    Article  Google Scholar 

  28. Sun, X., Xu, J., Jing, X., Cheng, L.: Beneficial performance of a quasi-zero-stiffness vibration isolator with time-delayed active control. Int. J. Mech. Sci. 82, 32–40 (2014). https://doi.org/10.1016/j.ijmecsci.2014.03.002

    Article  Google Scholar 

  29. Zhao, F., Cao, S., Luo, Q., Li, L., Ji, J.: Practical design of the QZS isolator with one pair of oblique bars by considering pre-compression and low-dynamic stiffness. Nonlinear Dyn. 108, 3313–3330 (2022). https://doi.org/10.1007/s11071-022-07368-9

    Article  Google Scholar 

  30. Zheng, Y., Zhang, X., Luo, Y., Zhang, Y., Xie, S.: Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness. Mech. Syst. Signal Process. 100, 135–151 (2018). https://doi.org/10.1016/j.ymssp.2017.07.028

    Article  Google Scholar 

  31. Zhou, Y., Chen, P., Mosqueda, G.: Analytical and numerical investigation of quasi-zero stiffness vertical isolation system. J. Eng. Mech. 145, 04019035 (2019). https://doi.org/10.1061/(asce)em.1943-7889.0001611

    Article  Google Scholar 

  32. Papaioannou, G., Voutsinas, A., Koulocheris, D.: Optimal design of passenger vehicle seat with the use of negative stiffness elements. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 234, 610–629 (2020). https://doi.org/10.1177/0954407019854879

    Article  Google Scholar 

  33. Le, T.D., Ahn, K.K.: Experimental investigation of a vibration isolation system using negative stiffness structure. Int. J. Mech. Sci. 70, 99–112 (2013). https://doi.org/10.1016/j.ijmecsci.2013.02.009

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 12002151) and the National Science Foundation of Jiangsu Province (Grant No. BK20190664).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linhui Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Zheng, Y., Song, L. et al. Design of a new quasi-zero-stiffness isolator system with nonlinear positive stiffness configuration and its novel features. Nonlinear Dyn 111, 5141–5163 (2023). https://doi.org/10.1007/s11071-022-08116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08116-9

Keywords

Navigation