Skip to main content
Log in

Boiti–Leon–Manna–Pempinelli equation including time-dependent coefficient (vcBLMPE): a variety of nonautonomous geometrical structures of wave solutions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Our work aims to investigate the vcBLMPE in \((3+1)\)-dimensions (3D-vcBLMPE) that characterizes wave propagation in incompressible fluids. In real-world issues, nonlinear partial differential equations containing time-dependent coefficients are more relevant than those with constant coefficients owing to inhomogeneities of media and nonuniformities of boundaries. In shallow water, linearization of the wave formation needs more critical wave capacity criteria than in water depths, and the strongly nonlinear aspects are readily visible. By using symbolic computation, several nonautonomous wave solutions with different geometric structures are obtained. Each of the gained solutions is presented graphically based on various arbitrary coefficients to demonstrate and better comprehend their dynamical properties. As a comparison between the new results and the results previously reported, we have presented several completely new findings in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

All data generated or analyzed during this study are included in this published article.

References

  1. Başhan, A., Uçar, Y., Yaǧmurlu, N.M., Esen, A.: Numerical solutions for the fourth order extended Fisher–Kolmogorov equation with high accuracy by differential quadrature method. Sigma J. Eng. Nat. Sci. 9(3), 273–284 (2018)

    Google Scholar 

  2. Osman, M.S., Ghanbari, B.: New optical solitary wave solutions of Fokas–Lenells equation in presence of perturbation terms by a novel approach. Optik 175, 328–333 (2018)

    Article  Google Scholar 

  3. Başhan, A., Murat Yaǧmurlu, N., Uçar, Y., Esen, A.: A new perspective for the numerical solution of the modified equal width wave equation. Math. Method Appl. Sci. 44(11), 8925–8939 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Başhan, A., Yaǧmurlu, N.M., Uçar, Y., Esen, A.: Finite difference method combined with differential quadrature method for numerical computation of the modified equal width wave equation. Numer. Methods Partial Differ. Equ. 37(1), 690–706 (2021)

    Article  MathSciNet  Google Scholar 

  5. Arqub, O.A., Osman, M.S., Abdel-Aty, A.H., Mohamed, A.B.A., Momani, S.: A numerical algorithm for the solutions of ABC singular Lane-Emden type models arising in astrophysics using reproducing kernel discretization method. Mathematics 8(6), 923 (2020)

    Article  Google Scholar 

  6. Başhan, A., Yaǧmurlu, N.M.: A mixed method approach to the solitary wave, undular bore and boundary-forced solutions of the Regularized Long Wave equation. Comput. Appl. Math. 41(4), 169 (2021)

    Article  MathSciNet  Google Scholar 

  7. Osman, M.S., Tariq, K.U., Bekir, A., Elmoasry, A., Elazab, N.S., Younis, M., Abdel-Aty, M.: Investigation of soliton solutions with different wave structures to the (2+ 1)-dimensional Heisenberg ferromagnetic spin chain equation. Commun. Theor. Phys. 72(3), 035002 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Başhan, A., Esen, A.: Single soliton and double soliton solutions of the quadratic-nonlinear Korteweg–de Vries equation for small and long-times. Numer. Methods Partial Differ. Equ. 37(2), 1561–1582 (2021)

    Article  MathSciNet  Google Scholar 

  9. Dubrovsky, V.G., Lisitsyn, Y.V.: The construction of exact solutions of two-dimensional integrable generalizations of Kaup-Kuperschmidt and Sawada-Kotera equations via \(\partial \)-dressing method. Phys. Lett. A 295, 198–207 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Saha, R.S.: Lie symmetries, exact solutions and conservation laws of the Oskolkov–Benjamin–Bona–Mahony–Burgers equation. Mod. Phys. Lett. B 34(1), 2050012 (2020)

    Article  MathSciNet  Google Scholar 

  11. Ali, M.R., Ma, W.X.: New exact solutions of Bratu Gelfand model in two dimensions using Lie symmetry analysis. Chin. J. Phys. 65, 198–206 (2020)

    Article  MathSciNet  Google Scholar 

  12. Ismael, H.F., Bulut, H., Park, C., Osman, M.S.: M-lump, N-soliton solutions, and the collision phenomena for the (2+ 1)-dimensional Date-Jimbo–Kashiwara–Miwa equation. Results Phys. 19, 103329 (2020)

    Article  Google Scholar 

  13. Manafian, J., Ilhan, O.A., Ismael, H.F., Mohammed, S.A., Mazanova, S.: Periodic wave solutions and stability analysis for the (3+ 1)-D potential-YTSF equation arising in fluid mechanics. Int. J. Comput. Math. 98(8), 1594–1616 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Saliou, Y., Abbagari, S., Houwe, A., Osman, M.S., Yamigno, D.S., Crépin, K.T., Inc, M.: W-shape bright and several other solutions to the (3+ 1)-dimensional nonlinear evolution equations. Mod. Phys. Lett. B 35, 2150468 (2021)

    Article  MathSciNet  Google Scholar 

  15. Abdulkareem, H.H., Ismael, H.F., Panakhov, E.S., Bulut, H.: Some novel solutions of the coupled Whitham–Broer–Kaup equations. In: International Conference on Computational Mathematics and Engineering Sciences, pp. 200–208. Springer (2019)

  16. Ali, K.K., Yilmazer, R., Baskonus, H.M., Bulut, H.: Modulation instability analysis and analytical solutions to the system of equations for the ion sound and Langmuir waves. Phys. Scr. 95(6), 065602 (2020)

    Article  Google Scholar 

  17. Guo, L., Zhang, Y., Xu, S., Wu, Z., He, J.: The higher order rogue wave solutions of the GerdjikovIvanov equation. Phys. Scr. 89(3), 035501 (2014)

    Article  Google Scholar 

  18. Ling, L., Feng, B.F., Zhu, Z.: General soliton solutions to a coupled Fokas–Lenells equation. Nonlinear Anal. Real World Appl. 40, 185–214 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Freeman, N.C.: Soliton solutions of non-linear evolution equations. IMA J. Appl. Math. 32(1–3), 125–145 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Osman, M.S.: One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada-Kotera equation. Nonlinear Dyn. 96(2), 1491–1496 (2019)

    Article  MATH  Google Scholar 

  21. Osman, M.S., Machado, J.A.T.: The dynamical behavior of mixed-type soliton solutions described by (2+ 1)-dimensional Bogoyavlensky–Konopelchenko equation with variable coefficients. J. Electromagn. Waves Appl. 32(11), 1457–1464 (2018)

    Article  Google Scholar 

  22. Yokuş, A., Kaya, D.: Comparison exact and numerical simulation of the traveling wave solution in nonlinear dynamics. Int. J. Mod. Phys. B 34, 2050282 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tarla, S., Ali, K., Yilmazer, R., Osman, M.S.: On dynamical behavior for optical solitons sustained by the perturbed Chen-Lee-Liu model. Commun. Theor. Phys. 74(7), 075005 (2022)

    Article  MathSciNet  Google Scholar 

  24. Wu, Q., Qi, G.: Quantum dynamics for Al-doped graphene composite sheet under hydrogen atom impact. Appl. Math. Model. 90, 1120–1129 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kumar, S., Kumar, A., Samet, B., Gómez-Aguilar, J.F., Osman, M.S.: A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment. Chaos Soliton Fract. 141, 110321 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rezazadeh, H., Osman, M.S., Eslami, M., Ekici, M., Sonmezoglu, A., Asma, M., Othman, W.A.M., Wong, B.R., Mirzazadeh, M., Zhou, Q., Biswas, A.: Mitigating Internet bottleneck with fractional temporal evolution of optical solitons having quadratic-cubic nonlinearity. Optik 164, 84–92 (2018)

    Article  Google Scholar 

  27. Wu, Q., Yao, M., Li, M., Cao, D., Bai, B.: Nonlinear coupling vibrations of graphene composite laminated sheets impacted by particles. Appl. Math. Model. 93, 75–88 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Alharthi, M.S., Ali, H.S., Habib, M.A., Miah, M.M., Aljohani, A.F., Akbar, M.A., Mahmoud, W., Osman, M.S.: Assorted soliton wave solutions of time-fractional BBM-Burger and Sharma–Tasso–Olver equations in nonlinear analysis. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.06.022

    Article  Google Scholar 

  29. Khalid, A., Alsubaie, A.S.A., Inc, M., Rehan, A., Mahmoud, W., Osman, M.S.: Cubic splines solutions of the higher order boundary value problems arise in sandwich panel theory. Result Phys. 39, 105726 (2022)

    Article  Google Scholar 

  30. Boiti, M., Leon, J.P., Pempinelli, F.: Integrable two-dimensional generalisation of the sine- and sinh-Gordon equations. Inverse Probl. 3(1), 37 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wazwaz, A.M.: Painlevé analysis for Boiti–Leon–Manna–Pempinelli equation of higher dimensions with time-dependent coefficients: multiple soliton solutions. Phys. Lett. A 384(16), 126310 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Darvishi, M.T., Najafi, M., Kavitha, L., Venkatesh, M.: Stair and step soliton solutions of the integrable (2+ 1) and (3+ 1)-dimensional Boiti–Leon–MannaPempinelli equations. Commun. Theor. Phys. 58, 785 (2012)

    Article  MATH  Google Scholar 

  33. Zuo, D.W., Gao, Y.T., Yu, X., Sun, Y.H., Xue, L.: On a (3+ 1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Zeitschrift Für Naturforsch. A 70, 309–316 (2015)

    Article  Google Scholar 

  34. Tang, Y., Zai, W.: New periodic-wave solutions for (2+ 1)- and (3+ 1)-dimensional Boiti–Leon–Manna–Pempinelli equations. Nonlinear Dyn. 81, 249–255 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, J.G., Du, J.Q., Zeng, Z.F., Nie, B.: New three-wave solutions for the (3+ 1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Nonlinear Dyn. 88, 655–661 (2017)

    Article  MathSciNet  Google Scholar 

  36. Liu, J.G., Tian, Y., Hu, J.G.: New non-traveling wave solutions for the (3+ 1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Appl. Math. Lett. 79, 162–168 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mabrouk, S.M., Rashed, A.S.: Analysis of (3+ 1)-dimensional Boiti–Leon–Manna–Pempinelli equation via Lax pair investigation and group transformation method. Comput. Math. Appl. 74, 2546–2556 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, B.Q., Ma, Y.L.: Multiple-lump waves for a (3+ 1)-dimensional Boiti–Leon–Manna–Pempinelli equation arising from incompressible fluid. Comput. Math. Appl. 76, 204–214 (2018)

  39. Osman, M.S., Wazwaz, A.: A general bilinear form to generate different wave structures of solitons for a (3+ 1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Math. Method Appl. Sci. 42, 6277–6283 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Peng, W.Q., Tian, S.F., Zhang, T.T.: Breather waves and rational solutions in the (3+ 1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Comput. Math. Appl. 77, 715–723 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xu, G.: Painlevé analysis, lump-kink solutions and localized excitation solutions for the (3+ 1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Appl. Math. Lett. 97, 81–87 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Liu, J.G., Zhu, W.H., He, Y., Lei, Z.Q.: Characteristics of lump solutions to a (3+ 1)-dimensional variable-coefficient generalized shallow water wave equation in oceanography and atmospheric science. Eur. Phys. J. Plus 134(8), 385 (2019)

    Article  Google Scholar 

  43. Liu, J.G., Ye, Q.: Stripe solitons and lump solutions for a generalized Kadomtsev–Petviashvili equation with variable coefficients in fluid mechanics. Nonlinear Dyn. 96, 23–29 (2019)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4410172DSR13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Mahmoud or M. S. Osman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismael, H.F., Akkilic, A.N., Murad, M.A.S. et al. Boiti–Leon–Manna–Pempinelli equation including time-dependent coefficient (vcBLMPE): a variety of nonautonomous geometrical structures of wave solutions. Nonlinear Dyn 110, 3699–3712 (2022). https://doi.org/10.1007/s11071-022-07817-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07817-5

Keywords

Navigation