Skip to main content
Log in

New three-wave solutions for the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on the extended three-wave approach and the Hirota’s bilinear method, the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation is investigated. With the aid of symbolic computation, some three-wave solutions including kinky periodic solitary-wave solutions, periodic soliton solutions and kink solutions are presented. The figures corresponding to these solutions are illustrated to show abundant physics structures. These solutions enrich the sorts of the dynamics of nonlinear wave model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu, J.G., Zeng, Z.F.: Multiple soliton solutions, soliton-type solutions and rational solutions for the (3+1)-dimensional potential-YTSF equation. Indian J. Pure. Appl. Math. 45, 989–1002 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Zuo, D.W., Gao, Y.T., Meng, G.Q., Shen, Y.J., Yu, X.: Multi-soliton solutions for the three-coupled KdV equations engendered by the neumann system. Nonlinear Dyn. 75(4), 1–8 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Liu, D.Y., Tian, B., Jiang, Y., Sun, W.R.: Soliton solutions and bäcklund transformations of a (2 + 1)-dimensional nonlinear evolution equation via the Jaulent–Miodek hierarchy. Nonlinear Dyn. 78(4), 2341–2347 (2014)

    Article  MATH  Google Scholar 

  4. Mirzazadeh, M., Arnous, A.H., Mahmood, M.F., Zerrad, E., Biswas, A.: Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach. Nonlinear Dyn. 81(1–2), 1–6 (2015)

    MATH  Google Scholar 

  5. Mirzazadeh, M.: Soliton solutions of Davey–Stewartson equation by trial equation method and ansatz approach. Nonlinear Dyn. 82(4), 1775–1780 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhang, L., Lin, Y.: Symbolic computation of exact solutions for nonlinear evolution equations. Nonlinear Dyn. 79(2), 823–833 (2014)

    Article  Google Scholar 

  7. Rajan, M.S.M., Mahalingam, A.: Nonautonomous solitons in modified inhomogeneous hirota equation: soliton control and soliton interaction. Nonlinear Dyn. 79(4), 2469–2484 (2014)

    Article  MathSciNet  Google Scholar 

  8. Jiang, H.J., Xiang, J.J., Dai, C.Q., Wang, Y.Y.: Nonautonomous bright soliton solutions on continuous wave and cnoidal wave backgrounds in blood vessels. Nonlinear Dyn. 75(1–2), 201–207 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eslami, M., Vajargah, B.F., Mirzazadeh, M., Biswas, A.: Application of first integral method to fractional partial differential equations. Indian J. Phys. 88(88), 177–184 (2014)

    Article  Google Scholar 

  10. Wazwaz, A.M.: Compactons, solitons and periodic solutions for some forms of nonlinear Klein–Gordon equations. Chaos Soliton Fractals 28(4), 1005–1013 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wazwaz, A.M.: The tanh method: solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd–Bullough equations. Chaos Soliton Fractals 25(1), 55–63 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wazwaz, A.M.: Multiple-front solutions for the Burgers–Kadomtsev–Petviashvili equation. Appl. Math. Comput. 200(1), 437–443 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Wazwaz, A.M.: Solitons and singular solitons for the Gardner–KP equation. Appl. Math. Comput. 204(1), 162–169 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform. Cambridge University Press, London (1990)

    MATH  Google Scholar 

  15. Sakthivel, R., Chun, C., Lee, J.: New travelling wave solutions of Burgers equation with finite transport memory. Z. Naturforschung A 65, 633–640 (2010)

    Google Scholar 

  16. Hirota, R.: Exact solutions of the Korteweg-de Vries equation for multiple collision of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  MATH  Google Scholar 

  17. Wazwaz, A.M.: Multiple soliton solutions and multiple singular soliton solutions for (2+1)-dimensional shallow water wave equations. Phys. Lett. A 373, 2927–2930 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 373, 1–6 (2015)

    Google Scholar 

  19. Wazwaz, A.M.: New (3+1)-dimensional nonlinear evolution equations with mKdV equation constituting its main part: multiple soliton solutions. Chaos Soliton Fractals 76, 93–97 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wazwaz, A.M.: A study on a (2+1)-dimensional and a (3+1)-dimensional generalized Burgers equation. Appl. Math. Lett. 31, 41–45 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ma, W.X., Zhu, Z.: Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm. Appl. Math. Comput. 218(24), 11871–11879 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Alnowehy, A.G.: The multiple exp-function method and the linear superposition principle for solving the (2+1)-dimensional Calogero–Bogoyavlenskii–Schiff equation. Z. Naturforschung A 70(9), 775–779 (2015)

    Google Scholar 

  23. Ma, W.X., Huang, T., Zhang, Y.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 82(6), 065003 (2010)

    Article  MATH  Google Scholar 

  24. Wazwaz, A.M.: Multiple-soliton solutions for the Calogero–Bogoyavlenskii–Schiff, Jimbo–Miwa and YTSF equations. Appl. Math. Comput. 203, 592–597 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Xie, T.C., Li, B., Zhang, H.Q.: New explicit and exact solutions for the Nizhnik–Novikov–Vesselov equation. Appl. Math. E-Notes 1, 139–142 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Fan, E., Zhang, H.: Anote on the homogeneous balance method. Phys. Lett. A 246, 403–406 (1998)

    Article  MATH  Google Scholar 

  27. Fan, E.: Two new applications of the homogeneous balance method. Phys. Lett. A 265, 353–357 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Senthilvelan, M.: On the extended applications of homogeneous balance method. Appl. Math. Comput. 123, 381–388 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Zhang, S.: The periodic wave solutions for the (2+1) dimensional Konopelchenko–Dubrovsky equations. Chaos Solitons Fractals 30, 1213–1220 (2006)

  30. El-Sabbagh, M.F., Ali, A.T.: Nonclassical symmetries for nonlinear partial differential equations via compatibility. Commun. Theor. Phys. 56, 611–616 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. El-Sabbagh, M.F., Hasan, M.M., Hamed, E.: The Painlevé property for some nonlinear evolution equations. In: Proceedings of the France-Egypt Mathematical Conference, Cairo, 3–5 May 2010

  32. El-Sabbagh, M.F., Ali, A.T., El-Ganaini, S.: New abundant exact solutions for the system of (2+1)-dimensional Burgers equations. Appl. Math. Inf. Sci. 2(1), 31–41 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Bai, C.J., Zhao, H., Xu, H.Y., Zhang, X.: New traveling wave solutions for a class of nonlinear evolution equations. Int. J. Mod. Phys. B 25, 319–327 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zayed, E.M.E., Gepreel, K.A.: The \((G^{\prime }/G)\)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics. J. Math. Phys. 50, 013502 (2009)

    Article  MathSciNet  Google Scholar 

  35. Kim, H., Sakthivel, R.: New exact traveling wave solutions of some nonlinear higher-dimensional physical models. Rep. Math. Phys. 70, 39–50 (2012)

    Article  MathSciNet  Google Scholar 

  36. Dai, Z.D., Lin, S.Q., Fu, H.M., Zeng, X.P.: Exact three-wave solutions for the KP equation. Appl. Math. Comput. 216(5), 1599–1604 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Wang, C.J., Dai, Z.D., Mu, G., Lin, S.Q.: New exact periodic solitary-wave solutions for new (2+1)-dimensional KdV equation. Commun. Theor. Phys. 52, 862–864 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zeng, X.P., Dai, Z.D., Li, D.L.: New periodic soliton solutions for the (3 + 1)-dimensional potential-YTSF equation. Chaos Solitons Fractals 42, 657–661 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Dai, Z.D., Li, S.L., Dai, Q.Y., Huang, J.: Singular periodic soliton solutions and resonance for the Kadomtsev–Petviashvili equation. Chaos Solitons Fractals 34(4), 1148–1153 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Dai, Z.D., Liu, Z.J., Li, D.L.: Exact periodic solitary-wave solution for KdV equation. Chin. Phys. Lett. A 25(5), 1151–1153 (2008)

    Google Scholar 

  41. Dai, Z.D., Huang, J., Jiang, M.R., Wang, S.H.: Homoclinic orbits and periodic solitons for Boussinesq equation with even constraint. Chaos Solitons Fractals 26, 1189–1194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Darvishi, M.T., Najafi, M., Kavitha, L., Venkatesh, M.: Stair and step soliton solutions of the integrable (2+1) and (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equations. Commun. Theor. Phys. 58, 785–794 (2012)

    Article  MATH  Google Scholar 

  43. Ma, H., Bai, Y.: Wronskian determinant solutions for the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. J. Appl. Math. Phys. 1, 18–24 (2013)

    Article  Google Scholar 

  44. Tang, Y., Zai, W.: New periodic-wave solutions for (2+1)- and (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equations. Nonlinear Dyn. 81(1–2), 249–255 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Editor, the Referees for their timely and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Guo Liu.

Additional information

Project supported by National Natural Science Foundation of China (Grant Nos. 61562045 and 61363042).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JG., Du, JQ., Zeng, ZF. et al. New three-wave solutions for the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Nonlinear Dyn 88, 655–661 (2017). https://doi.org/10.1007/s11071-016-3267-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3267-2

Keywords

Mathematics Subject Classification

Navigation