Skip to main content

Advertisement

Log in

A multi-stable nonlinear energy sink for torsional vibration of the rotor system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A multi-stable nonlinear energy sink (MNES) is presented and coupled to a rotor system to suppress torsional vibration. The nonlinear stiffness of the MNES is produced by sinusoidal beam which can generate negative stiffness. The torsional vibration responses of the rotor-MNES system under transient and steady-state excitation are evaluated numerically while the damping results are optimized by genetic algorithm (GA). And also, the snap-through motion (STM) of the MNES is observed, the influence of parameters on the vibration suppression of the MNES is analyzed and the vibration suppression effect is compared with a linear dynamic vibration absorber (LDVA). Finally, the experimental verification of the steady-state torsional vibration suppression of the MNES is carried out. The results show that the accumulated energy dissipation percentage of the MNES can reach 91.5% in transient torsional vibration suppression, and the vibration suppression of the MNES is 79.4% in simulation and 77.6% in test in steady-state torsional vibration suppression. And also, when the MNES and a LDVA have the same inertial mass, the vibration suppression performance of MNES is better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author [Hongliang Yao], upon reasonable request.

References

  1. Ari, M., Faal, R.T.: Passive vibration suppression of plate using multiple optimal dynamic vibration absorbers. Arch. Appl. Mech. 90(2), 235–274 (2020)

    Article  MATH  Google Scholar 

  2. Ma, W.S., Zhang, W., Zhang, Y.F.: Stability and multi-pulse jumping chaotic vibrations of a rotor-active magnetic bearing system with 16-pole legs under mechanical-electric-electromagnetic excitations. Eur. J. Mech.-A/Solids. 85, 104120 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  4. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., Mojahed, A., Gzal, M.: Nonlinear targeted energy transfer: state of the art and new perspectives. Nonlinear Dyn. 108, 711–741 (2022)

    Article  Google Scholar 

  5. Wu, Z., Seguy, S., Paredes, M.: Estimation of energy pumping time in bistable NES and experimental validation. J. Vibr. Acoust. 144, 051004 (2022)

    Article  Google Scholar 

  6. Gendelman, O.V., Alloni, A.: Forced system with vibro-impact energy sink: chaotic strongly modulated responses. Procedia IUTAM. 19, 53–64 (2016)

    Article  Google Scholar 

  7. Al-Shudeifat, M.A., Saeed, A.S.: Frequency-energy plot and targeted energy transfer analysis of coupled bistable nonlinear energy sink with linear oscillator. Nonlinear Dyn. 105(4), 2877–2898 (2021)

    Article  Google Scholar 

  8. Georgiades, F., Vakakis, A.F., Kerschen, G.: Broadband passive targeted energy pumping from a linear dispersive rod to a lightweight essentially non-linear end attachment. Int. J. Non Linear Mech. 42(5), 773–788 (2007)

    Article  Google Scholar 

  9. Jin, Y., Hou, S., Yang, T.: Cascaded essential nonlinearities for enhanced vibration suppression and energy harvesting. Nonlinear Dyn. 103, 1427–1438 (2021)

    Article  Google Scholar 

  10. Starosvetsky, Y., Gendelman, O.V.: Strongly modulated response in forced 2DOF oscillatory system with essential mass and potential asymmetry. Physica D 237(13), 1719–1733 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, J., Zhang, C., Li, H., Liu, Z.: Experimental and numerical studies of a novel track bistable nonlinear energy sink with improved energy robustness for structural response mitigation. Eng. Struct. 237, 112184 (2021)

    Article  Google Scholar 

  12. Wang, J., Zhang, C., Li, H., Liu, Z.: A vertical-vibro‐impact‐enhanced track bistable nonlinear energy sink for robust and comprehensive control of structures. Struct. Control Health Monitor. 29, e2931 (2022)

    Article  Google Scholar 

  13. Qiu, D., Seguy, S., Paredes, M.: Tuned nonlinear energy sink with conical spring: design theory and sensitivity analysis. J. Mech. Design. 140, 011404 (2018)

    Article  Google Scholar 

  14. Qiu, D., Seguy, S., Paredes, M.: A novel design of cubic stiffness for a Nonlinear Energy Sink (NES) based on conical spring. In: Advances on Mechanics, Design Engineering and Manufacturing, vol. 1, pp. 565–573. Springer, Cham (2016)

    Google Scholar 

  15. Youssef, B., Leine, R.I.: A complete set of design rules for a vibro-impact NES based on a multiple scales approximation of a nonlinear mode. J. Sound Vib. 501, 116043 (2021)

    Article  Google Scholar 

  16. Li, H., Li, A., Zhang, Y.: Importance of gravity and friction on the targeted energy transfer of vibro-impact nonlinear energy sink. Int. J. Impact Eng 157, 104001 (2021)

    Article  Google Scholar 

  17. Yao, H., Wang, Y., Xie, L., Wen, B.: Bi-stable buckled beam nonlinear energy sink applied to rotor system. Mech. Syst. Signal Process. 138, 106546 (2020)

    Article  Google Scholar 

  18. Yao, H., Wang, Y., Cao, Y., Wen, B.: Multi-stable nonlinear energy sink for rotor system. Int. J. Non-Linear Mech. 118, 103273 (2020)

    Article  Google Scholar 

  19. Yao, H., Cao, Y., Wang, Y., Wen, B.: A tri-stable nonlinear energy sink with piecewise stiffness. J. Sound Vib. 463, 114971 (2019)

    Article  Google Scholar 

  20. AL-Shudeifat, M.A., Wierschem, N.E., Bergman, L.A., Vakakis, A.F.: Numerical and experimental investigations of a rotating nonlinear energy sink. Meccanica. 52(4), 763-779 (2017).

  21. Saeed, A.S., Al-Shudeifat, M.A., Vakakis, A.F., Cantwell, W.J.: Rotary-impact nonlinear energy sink for shock mitigation: analytical and numerical investigations. Arch. Appl. Mech. 90(3), 495–521 (2020)

    Article  Google Scholar 

  22. Yao, H., Zheng, D., Wen, B.: Magnetic nonlinear energy sink for vibration attenuation of unbalanced rotor system. Shock Vibr. 2017, 1–15 (2017)

    Article  Google Scholar 

  23. Chen, Y.Y., Qian, Z.C., Zhao, W., Chang, C.M.: A magnetic bi-stable nonlinear energy sink for structural seismic control. J. Sound Vib. 473, 115233 (2020)

    Article  Google Scholar 

  24. Yao, H., Cao, Y., Zhang, S., Wen, B.: A novel energy sink with piecewise linear stiffness. Nonlinear Dyn. 94(3), 2265–2275 (2018)

    Article  Google Scholar 

  25. Yao, H., Cao, Y., Ding, Z., Wen, B.: Using grounded nonlinear energy sinks to suppress lateral vibration in rotor systems. Mech. Syst. Signal Process. 124, 237–253 (2019)

    Article  Google Scholar 

  26. Zang, J., Zhang, Y.W.: Responses and bifurcations of a structure with a lever-type nonlinear energy sink. Nonlinear Dyn. 98, 889–906 (2019)

    Article  Google Scholar 

  27. Zang, J., Cao, R.Q., Zhang, Y.W.: Steady-state response of a viscoelastic beam with asymmetric elastic supports coupled to a lever-type nonlinear energy sink. Nonlinear Dyn. 105, 1327–1341 (2021)

    Article  Google Scholar 

  28. Zhang, Y.W., Lu, Y.N., Zhang, W., Teng, Y.Y., Yang, H.X., Yang, T.Z., Chen, L.Q.: Nonlinear energy sink with inerter. Mech. Syst. Signal Process. 125, 52–64 (2019)

    Article  Google Scholar 

  29. Zhang, Z., Lu, Z.Q., Ding, H., Chen, L.Q.: An inertial nonlinear energy sink. J. Sound Vib. 450, 199–213 (2019)

    Article  Google Scholar 

  30. Al-Shudeifat, M.: Nonlinear energy sinks with non-traditional kinds of nonlinear restoring forces. J. Vib. Acoust. 139, 024503.1-024503.5 (2016)

    Google Scholar 

  31. Tsiatas, G.C., Charalampakis, A.E.: A new hysteretic nonlinear energy sink (HNES). Commun. Nonlinear Sci. Numer. Simul. 60, 1–11 (2018)

    Article  MATH  Google Scholar 

  32. Yang, T., Liu, T., Tang, Y., Hou, S., Lv, X.: Enhanced targeted energy transfer for adaptive vibration suppression of pipes conveying fluid. Nonlinear Dyn. 97(3), 1937–1944 (2019)

    Article  Google Scholar 

  33. Zhou, J., Xu, M., Zha, J., Yang, Z.: The suppression of nonlinear panel flutter response at elevated temperatures using a nonlinear energy sink. Meccanica 56(1), 41–57 (2021)

    Article  Google Scholar 

  34. Yang, T., Hou, S., Qin, Z., Qian, D., Chen, L.: A dynamic reconfigurable nonlinear energy sink. J. Sound Vib. 494, 115629 (2021)

    Article  Google Scholar 

  35. Qiu, D., Paredes, M., Seguy, S.: Variable pitch spring for nonlinear energy sink: application to passive vibration control. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 233, 611–622 (2019)

    Article  Google Scholar 

  36. AL-Shudeifat, M.A., Saeed, A.S.: Comparison of a modified vibro-impact nonlinear energy sink with other kinds of NESs. Meccanica. 56, 735–752 (2021).

  37. Ebrahimzade, N., Dardel, M., Shafaghat, R.: Performance comparison of linear and nonlinear vibration absorbers in aeroelastic characteristics of a wing model. Nonlinear Dyn. 86, 1075–1094 (2016)

    Article  Google Scholar 

  38. Zhang, Z., Ding, H., Zhang, Y.W., Chen, L.Q.: Vibration suppression of an elastic beam with boundary inerter-enhanced nonlinear energy sinks. Acta. Mech. Sin. 37, 387–401 (2021)

    Article  MathSciNet  Google Scholar 

  39. Geng, X.F., Ding, H.: Theoretical and experimental study of an enhanced nonlinear energy sink. Nonlinear Dyn. 104, 3269–3291 (2021)

    Article  Google Scholar 

  40. Tan, D.D., Lu, Z.Q., Gu, D.H., Chen, L.Q.: A ring vibration isolator enhanced by a nonlinear energy sink. J. Sound Vib. 508, 116201 (2021)

    Article  Google Scholar 

  41. Ding, H., Chen, L.Q.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100, 3061–3107 (2020)

    Article  Google Scholar 

  42. Yang, K., Zhang, Y.W., Ding, H., Chen, L.Q.: The transmissibility of nonlinear energy sink based on nonlinear output frequency-response functions. Commun. Nonlinear Sci. Numer. Simul. 44, 184–192 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, Y.W., Zhou, L., Wang, S., Yang, T., Chen, L.Q.: Vibration power flow characteristics of the whole-spacecraft with a nonlinear energy sink. J. Low Freq. Noise Vib. Active Control. 38, 341–351 (2019)

    Article  Google Scholar 

  44. Silva, C.E., Maghareh, A., Tao, H., Dyke, S.J., Gibert, J.: Evaluation of energy and power flow in a nonlinear energy sink attached to a linear primary oscillator. J. Vib. Acoust. 141, 061012 (2019)

    Article  Google Scholar 

  45. Bergeot, B.: Scaling law for the slow flow of an unstable mechanical system coupled to a nonlinear energy sink. J. Sound Vib. 503, 116109 (2021)

    Article  Google Scholar 

  46. Bitar, D., Gourdon, E., Lamarque, C.H., Collet, M.: Shunt loudspeaker using nonlinear energy sink. J. Sound Vib. 456, 254–271 (2019)

    Article  Google Scholar 

  47. Bryk, P.Y., Côte, R., Bellizzi, S.: Targeted energy transfer from a resonant room to a hybrid electro-acoustic nonlinear membrane absorber: numerical and experimental study. J. Sound Vib. 460, 114868 (2019)

    Article  Google Scholar 

  48. Bab, S., Khadem, S.E., Shahgholi, M.: Vibration attenuation of a rotor supported by journal bearings with nonlinear suspensions under mass eccentricity force using nonlinear energy sink. Meccanica 50(9), 2441–2460 (2015)

    Article  MathSciNet  Google Scholar 

  49. Bab, S., Khadem, S.E., Shahgholi, M., Abbasi, A.: Vibration attenuation of a continuous rotor-blisk-journal bearing system employing smooth nonlinear energy sinks. Mech. Syst. Signal Process. 84, 128–157 (2017)

    Article  Google Scholar 

  50. Cao, Y., Yao, H., Han, J., Li, Z., Wen, B.: Application of non-smooth NES in vibration suppression of rotor-blade systems. Appl. Math. Model. 87, 351–371 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  51. Cao, Y., Yao, H., Li, Q., Yang, P., Wen, B.: Vibration mitigation and dynamics of a rotor-blade system with an attached nonlinear energy sink. Int. J. Non Linear Mech. 127, 103614 (2020)

    Article  Google Scholar 

  52. Guo, C., Al-Shudeifat, M.A., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Yan, J.: Vibration reduction in unbalanced hollow rotor systems with nonlinear energy sinks. Nonlinear Dyn. 79(1), 527–538 (2015)

    Article  Google Scholar 

  53. Tehrani, G.G., Dardel, M.: Mitigation of nonlinear oscillations of a Jeffcott rotor System with an optimized damper and nonlinear energy sink. Int. J. Non Linear Mech. 98, 122–136 (2018)

    Article  Google Scholar 

  54. Tehrani, G.G., Dardel, M.: Vibration mitigation of a flexible bladed rotor dynamic system with passive dynamic absorbers. Commun. Nonlinear Sci. Numer. Simul. 69, 1–30 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  55. Ahmadabadi, Z.N.: Nonlinear energy transfer from an engine crankshaft to an essentially nonlinear attachment. J. Sound Vib. 443, 139–154 (2019)

    Article  Google Scholar 

  56. Haris, A., Motato, E., Theodossiades, S., Rahnejat, H., Kelly, P., Vakakis, A., Bergman, L.A., McFarland, D.M.: A study on torsional vibration attenuation in automotive drivetrains using absorbers with smooth and non-smooth nonlinearities. Appl. Math. Model. 46, 674–690 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  57. Haris, A., Alevras, P., Mohammadpour, M., Theodossiades, S., O’ Mahony, M.: Design and validation of a nonlinear vibration absorber to attenuate torsional oscillations of propulsion systems. Nonlinear Dyn. 100(1), 33–49 (2020)

  58. Motato, E., Haris, A., Theodossiades, S., Mohammadpour, M., Rahnejat, H., Kelly, P., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Targeted energy transfer and modal energy redistribution in automotive drivetrains. Nonlinear Dyn. 87(1), 169–190 (2017)

    Article  MATH  Google Scholar 

  59. Haris, A., Motato, E., Mohammadpour, M., Theodossiades, S., Rahnejat, H., O’ Mahony, M., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: On the effect of multiple parallel nonlinear absorbers in palliation of torsional response of automotive drivetrain. Int. J. Non Linear Mech. 96, 22–35 (2017)

  60. Masana, R., Daqaq, M.F.: Relative performance of a vibratory energy harvester in mono- and bi-stable potentials. J. Sound Vib. 330(24), 6036–6052 (2011)

    Article  Google Scholar 

  61. Rezaei, M., Talebitooti, R.: Investigating the performance of tri-stable magneto-piezoelastic absorber in simultaneous energy harvesting and vibration isolation. Appl. Math. Model. 102, 661–693 (2022)

    Article  Google Scholar 

  62. Panyam, M., Daqaq, M.F.: Characterizing the effective bandwidth of tri-stable energy harvesters. J. Sound Vib. 386, 336–358 (2017)

    Article  Google Scholar 

  63. Mei, X., Zhou, S., Yang, Z., Kaizuka, T., Nakano, K.: Enhancing energy harvesting in low-frequency rotational motion by a quad-stable energy harvester with time-varying potential wells. Mech. Syst. Signal Process. 148, 107167 (2021)

    Article  Google Scholar 

  64. Zhou, Z., Qin, W., Zhu, P.: Improve efficiency of harvesting random energy by snap-through in a quad-stable harvester. Sens. Actuators A 243, 151–158 (2016)

    Article  Google Scholar 

  65. Peng, Z.K., Meng, G., Lang, Z.Q., Zhang, W.M., Chu, F.L.: Study of the effects of cubic nonlinear damping on vibration isolations using Harmonic Balance Method. Int. J. Non Linear Mech. 47(10), 1073–1080 (2012)

    Article  Google Scholar 

  66. Vangbo, M.: An analytical analysis of a compressed bistable buckled beam. Sens. Actuators A 69(3), 212–216 (1998)

    Article  Google Scholar 

  67. Jin, Q., Lang, J.H., Slocum, A.H.: A curved-beam bistable mechanism. J. Microelectromech. Syst. 13(2), 137–146 (2004)

    Article  Google Scholar 

  68. Fan, H., Yang, L., Tian, Y., Wang, Z.: Design of metastructures with quasi-zero dynamic stiffness for vibration isolation. Compos. Struct. 243, 112244 (2020)

    Article  Google Scholar 

  69. Li, X., Liu, K., Xiong, L., Tang, L.: Development and validation of a piecewise linear nonlinear energy sink for vibration suppression and energy harvesting. J. Sound Vib. 503, 116104 (2021)

    Article  Google Scholar 

  70. Den Hartog, J.P.: Mechanical vibrations. Courier Corporation (1985)

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 52075084, U1708257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Yao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Yao, H., Dou, J. et al. A multi-stable nonlinear energy sink for torsional vibration of the rotor system. Nonlinear Dyn 110, 1253–1278 (2022). https://doi.org/10.1007/s11071-022-07681-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07681-3

Keywords

Navigation