Skip to main content
Log in

Rogue Waves in the Generalized Derivative Nonlinear Schrödinger Equations

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

General rogue waves are derived for the generalized derivative nonlinear Schrödinger (GDNLS) equations by a bilinear Kadomtsev–Petviashvili (KP) reduction method. These GDNLS equations contain the Kaup–Newell equation, the Chen–Lee–Liu equation and the Gerdjikov–Ivanov equation as special cases. In this bilinear framework, it is shown that rogue waves to all members of these equations are expressed by the same bilinear solution. Compared to previous bilinear KP reduction methods for rogue waves in other integrable equations, an important improvement in our current KP reduction procedure is a new parameterization of internal parameters in rogue waves. Under this new parameterization, the rogue wave expressions through elementary Schur polynomials are much simpler. In addition, the rogue wave with the highest peak amplitude at each order can be obtained by setting all those internal parameters to zero, and this maximum peak amplitude at order N turns out to be \(2N+1\) times the background amplitude, independent of the individual GDNLS equation and the background wavenumber. It is also reported that these GDNLS equations can be decomposed into two different bilinear systems which require different KP reductions, but the resulting rogue waves remain the same. Dynamics of rogue waves in the GDNLS equations is also analyzed. It is shown that the wavenumber of the constant background strongly affects the orientation and duration of the rogue wave. In addition, some new rogue patterns are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal, G.P.: Nonlinear Fiber Optics, 3rd edn. Academic Press, San Diego (2001)

    MATH  Google Scholar 

  • Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009a)

    MATH  Google Scholar 

  • Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80, 026601 (2009b)

    Google Scholar 

  • Ankiewicz, A., Clarkson, P.A., Akhmediev, N.: Rogue waves, rational solutions, the patterns of their zeros and integral relations. J. Phys. A 43, 122002 (2010a)

    MathSciNet  MATH  Google Scholar 

  • Ankiewicz, A., Akhmediev, N., Soto-Crespo, J.M.: Discrete rogue waves of the Ablowitz-Ladik and Hirota equations. Phys. Rev. E 82, 026602 (2010b)

    MathSciNet  Google Scholar 

  • Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2010c)

    MathSciNet  Google Scholar 

  • Ankiewicz, A., Bokaeeyan, M., Akhmediev, N.: Rogue waves under influence of Raman delay. J. Opt. Soc. Am. B 35, 899–908 (2018)

    Google Scholar 

  • Baronio, F., Degasperis, A., Conforti, M., Wabnitz, S.: Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves. Phys. Rev. Lett. 109, 044102 (2012)

    Google Scholar 

  • Baronio, F., Conforti, M., Degasperis, A., Lombardo, S., Onorato, M., Wabnitz, S.: Vector rogue waves and baseband modulation instability in the defocusing regime. Phys. Rev. Lett. 113, 034101 (2014)

    Google Scholar 

  • Baronio, F., Frisquet, B., Chen, S., Millot, G., Wabnitz, S., Kibler, B.: Observation of a group of dark rogue waves in a telecommunication optical fiber. Phys. Rev. A 97, 013852 (2018)

    Google Scholar 

  • Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    Google Scholar 

  • Chabchoub, A., Hoffmann, N., Onorato, M., Slunyaev, A., Sergeeva, A., Pelinovsky, E., Akhmediev, N.: Observation of a hierarchy of up to fifth-order rogue waves in a water tank. Phys. Rev. E 86, 056601 (2012)

    Google Scholar 

  • Chan, H.N., Chow, K.W., Kedziora, D.J., Grimshaw, R.H.J., Ding, E.: Rogue wave modes for a derivative nonlinear Schrödinger model. Phys. Rev. E 89, 032914 (2014)

    Google Scholar 

  • Chen, H.H., Lee, Y.C., Liu, C.S.: Integrability of nonlinear Hamiltonian systems by inverse scattering method. Phys. Scr. 20, 490 (1979)

    MathSciNet  MATH  Google Scholar 

  • Chen, J., Chen, Y., Feng, B.F., Maruno, K.I., Ohta, Y.: General high-order rogue waves of the (1 + 1)-dimensional Yajima-Oikawa system. J. Phys. Soc. Jpn. 87, 094007 (2018a)

    Google Scholar 

  • Chen, J., Feng, B.F., Maruno, K., Ohta, Y.: The derivative Yajima-Oikawa system: bright, dark soliton and breather solutions. Stud. Appl. Math. 141, 145–185 (2018b)

    MathSciNet  MATH  Google Scholar 

  • Chen, S., Zhou, Y., Bu, L., Baronio, F., Soto-Crespo, J.M., Mihalache, D.: Super chirped rogue waves in optical fibers. Opt. Exp. 27, 11370–11384 (2019)

    Google Scholar 

  • Chow, K.W., Chan, H.N., Kedziora, D.J., Grimshaw, R.H.J.: Rogue wave modes for the long wave-short wave resonance model. J. Phys. Soc. Jpn. 82, 074001 (2013)

    Google Scholar 

  • Clarkson, P.A., Cosgrove, C.M.: Painlevé analysis of the nonlinear Schrödinger family of equations. J. Phys. A 20, 2003–2024 (1987)

    MathSciNet  MATH  Google Scholar 

  • Clarkson, P.A., Dowie, E.: Rational solutions of the Boussinesq equation and applications to rogue waves. Trans. Math. Appl. 1, 1–26 (2017)

    MathSciNet  MATH  Google Scholar 

  • Dubard, P., Matveev, V.B.: Multi-rogue waves solutions: from the NLS to the KP-I equation. Nonlinearity 26, R93–R125 (2013)

    MathSciNet  MATH  Google Scholar 

  • Dubard, P., Gaillard, P., Klein, C., Matveev, V.B.: On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation. Eur. Phys. J. Spec. Top. 185, 247–258 (2010)

    Google Scholar 

  • Dysthe, K., Krogstad, H.E., Müller, P.: Oceanic rogue waves. Annu. Rev. Fluid Mech. 40, 287–310 (2008)

    MathSciNet  MATH  Google Scholar 

  • Feng, B.F., Maruno, K.I., Ohta, Y.: Geometric formulation and multi-dark soliton solution to the defocusing complex short pulse equation. Stud. Appl. Math. 138, 343–367 (2017)

    MathSciNet  MATH  Google Scholar 

  • Frisquet, B., Kibler, B., Morin, P., Baronio, F., Conforti, M., Millot, G., Wabnitz, S.: Optical dark rogue wave. Sci. Rep. 6, 20785 (2016)

    Google Scholar 

  • Gerdjikov, V.S., Ivanov, I.: A quadratic pencil of general type and nonlinear evolution equations. II. Hierarchies of Hamiltonian structures. Bulg. J. Phys. 10, 130–143 (1983)

    MathSciNet  Google Scholar 

  • Gilson, C., Hietarinta, J., Nimmo, J., Ohta, Y.: Sasa-Satsuma higher-order nonlinear Schrödinger equation and its bilinearization and multisoliton solutions. Phys. Rev. E 68, 016614 (2003)

    MathSciNet  Google Scholar 

  • Guo, B.L., Ling, L.M., Liu, Q.P.: Nonlinear Schrodinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

    Google Scholar 

  • Guo, B.L., Ling, L.M., Liu, Q.P.: High-order solutions and generalized Darboux transformations of derivative nonlinear Schrödinger equations. Stud. Appl. Math. 130, 317–344 (2013)

    MathSciNet  MATH  Google Scholar 

  • Guo, L.J., Zhang, Y.S., Xu, S.W., Wu, Z.W., He, J.S.: The higher order rogue wave solutions of the Gerdjikov-Ivanov equation. Phys. Scr. 89, 035501 (2014)

    Google Scholar 

  • Kakei, S., Sasa, N., Satsuma, J.: Bilinearization of a generalized derivative nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 64, 1519–1523 (1995)

    MATH  Google Scholar 

  • Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19, 798–801 (1978)

    MATH  Google Scholar 

  • Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Circular rogue wave clusters. Phys. Rev. E 84, 056611 (2011)

    MATH  Google Scholar 

  • Kharif, C., Pelinovsky, E., Slunyaev, A.: Rogue Waves in the Ocean. Springer, Berlin (2009)

    MATH  Google Scholar 

  • Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790–795 (2010)

    Google Scholar 

  • Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, San Diego (2003)

    Google Scholar 

  • Kundu, A.: Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations. J. Math. Phys. 25, 3433–3438 (1984)

    MathSciNet  Google Scholar 

  • Ling, L.M., Feng, B.F., Zhu, Z.: Multi-soliton, multi-breather and higher order rogue wave solutions to the complex short pulse equation. Physica D 327, 13–29 (2016)

    MathSciNet  MATH  Google Scholar 

  • Mio, K., Ogino, T., Minami, K., Takeda, S.: Modified nonlinear Schröinger equation for Alfvén waves propagating along the magnetic field in cold plasmas. J. Phys. Soc. Jpn. 41, 265 (1976)

    MATH  Google Scholar 

  • Mjolhus, E.: On the modulational instability of hydromagnetic waves parallel to the magnetic field. J. Plasma Phys. 16, 321–334 (1976)

    Google Scholar 

  • Moses, J., Malomed, B.A., Wise, F.W.: Self-steepening of ultrashort optical pulses without self-phasemodulation. Phys. Rev. A 76, 021802 (2007)

    Google Scholar 

  • Mu, G., Qin, Z.: Dynamic patterns of high-order rogue waves for Sasa-Satsuma equation. Nonlinear Anal. Real World Appl. 31, 179–209 (2016)

    MathSciNet  MATH  Google Scholar 

  • Ohta, Y., Yang, J.: General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. Lond. A 468, 1716–1740 (2012a)

    MathSciNet  MATH  Google Scholar 

  • Ohta, Y., Yang, J.: Rogue waves in the Davey-Stewartson I equation. Phys. Rev. E 86, 036604 (2012b)

    Google Scholar 

  • Ohta, Y., Yang, J.: Dynamics of rogue waves in the Davey-Stewartson II equation. J. Phys. A 46, 105202 (2013)

    MathSciNet  MATH  Google Scholar 

  • Ohta, Y., Yang, J.: General rogue waves in the focusing and defocusing Ablowitz-Ladik equations. J. Phys. A 47, 255201 (2014)

    MathSciNet  MATH  Google Scholar 

  • Peregrine, D.H.: Water waves, nonlinear Schrodinger equations and their solutions. J. Aust. Math. Soc. B 25, 16–43 (1983)

    MathSciNet  MATH  Google Scholar 

  • Qiu, D.Q., He, J.S., Zhang, Y.S., Porsezian, K.: The Darboux transformation of the Kundu–Eckhaus equation. Proc. R. Soc. A 471, 20150236 (2015)

    MathSciNet  MATH  Google Scholar 

  • Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–1057 (2007)

    Google Scholar 

  • Wabnitz, S. (ed.): Nonlinear Guided Wave Optics: A Testbed for Extreme Waves. IOP Publishing, Bristol (2017)

    Google Scholar 

  • Wang, X., Yang, B., Chen, Y., Yang, Y.Q.: Higher-order rogue wave solutions of the Kundu–Eckhaus equation. Phys. Scr. 89, 095210 (2014)

    Google Scholar 

  • Wang, L., Yang, C.H., Wang, J., He, J.S.: The height of an \(n\)th-order fundamental rogue wave for the nonlinear Schrödinger equation. Phys. Lett. A 381, 1714–1718 (2017)

    MathSciNet  MATH  Google Scholar 

  • Xu, S.W., He, J.S.: The rogue wave and breather solution of the Gerdjikov-Ivanov equation. J. Math. Phys. 53, 063507 (2012)

    MathSciNet  MATH  Google Scholar 

  • Xu, S.W., He, J.S., Wang, L.H.: The Darboux transformation of the derivative nonlinear Schrödinger equation. J. Phys. A 44, 305203 (2011)

    MathSciNet  MATH  Google Scholar 

  • Yang, B., Yang, J.: On general rogue waves in the parity-time-symmetric nonlinear Schrödinger equation. J. Math. Anal. Appl. 487, 124023 (2020)

    MathSciNet  MATH  Google Scholar 

  • Zhang, X., Chen, Y.: General high-order rogue waves to nonlinear Schrödinger–Boussinesq equation with the dynamical analysis. Nonlinear Dyn. 93, 2169–2184 (2018)

    MATH  Google Scholar 

  • Zhang, Y.S., Guo, L.J., Chabchoub, A., He, J.S.: Higher-order rogue wave dynamics for a derivative nonlinear Schrödinger equation. Rom. J. Phys. 62, 102 (2017)

    Google Scholar 

  • Zhaqilao: On Nth-order rogue wave solution to the generalized nonlinear Schrödinger equation. Phys. Lett. A 377, 855–859 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of B.Y. and J.Y. is supported in part by the National Science Foundation (DMS-1910282) and the Air Force Office of Scientific Research (FA9550-18-1-0098), and the work of J.C. is supported by the National Natural Science Foundation of China (No. 11705077). J.C. thanks J.Y. and the University of Vermont for hospitality during his visit, where this work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianke Yang.

Additional information

Communicated by Peter Miller.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Bilinear derivation of rogue waves in the Kundu–Eckhaus equation

Appendix: Bilinear derivation of rogue waves in the Kundu–Eckhaus equation

When \(a=b\), Eq. (1) becomes the Kundu–Eckhaus equation (Kundu 1984)

$$\begin{aligned} \text {i} \phi _{t} + \phi _{\xi \xi } + \rho |\phi |^2\phi + \text {i}a (|\phi |^2)_{\xi }\phi +\frac{1}{4}a^2|\phi |^4\phi =0. \end{aligned}$$
(90)

Under a gauge transformation

$$\begin{aligned} \phi (\xi ,t)=w(\xi ,t) e^{-\frac{a}{2}\text {i}\int |w(\xi ,t)|^2 d\xi }, \end{aligned}$$

this Kundu–Eckhaus equation reduces to the NLS equation

$$\begin{aligned} \text {i}w_{t} + w_{\xi \xi } + \rho |w|^2w=0, \end{aligned}$$
(91)

whose rogue waves have been derived before (Akhmediev et al. 2009b; Ankiewicz et al. 2010a; Dubard et al. 2010; Kedziora et al. 2011; Guo et al. 2012; Ohta and Yang 2012a; Dubard and Matveev 2013). To directly obtain rogue waves in the Kundu–Eckhaus equation (90) without the use of the above gauge transformation, we can apply a similar bilinear approach as we did for the \(a\ne b\) case in the main text of this article. Specifically, through a scaling of \((\phi , \xi , t, a)\) together with a Galilean transformation, we can normalize \(\rho =2\) in Eq. (90), and the boundary conditions of its rogue waves can be normalized as

$$\begin{aligned} \phi (\xi , t) \rightarrow e^{\mathrm{i}\left( 2t-\frac{1}{2}a\xi \right) }, \quad (\xi , t) \rightarrow \infty . \end{aligned}$$
(92)

Then, we employ a bilinear variable transformation

$$\begin{aligned} \phi (\xi ,t)=e^{\mathrm{i}\left[ 2t-\frac{1}{2}a[\xi +(\ln f)_\xi ]\right] }\frac{g}{f}, \end{aligned}$$
(93)

where f is a real function, and g a complex function. Under this transformation, the Kundu–Eckhaus equation (90) can be split into the following three bilinear equations,

$$\begin{aligned}&\left( \mathrm{i} D_t+D_\xi ^2\right) g\cdot f=0, \end{aligned}$$
(94)
$$\begin{aligned}&(D_\xi ^2+2)f\cdot f=2|g|^2, \end{aligned}$$
(95)
$$\begin{aligned}&D_\xi D_tf\cdot f=2\mathrm{i}D_\xi g\cdot g^*. \end{aligned}$$
(96)

One can recognize that the first two bilinear equations are the ones for the NLS equation (91) with \(\rho =2\) (Ohta and Yang 2012a). It turns out that the (fg) solutions for rogue waves of the NLS equation also satisfy the third bilinear equation above, and thus, rogue waves for the Kundu–Eckhaus equation (90) are given by (93), where (fg) are those for the NLS equation (91). The reason for this is that under the same differential and difference relations of \(\tau \) functions listed in Eq. (3.7) of Ohta and Yang (2012a), the following three multi-dimensional bilinear equations are satisfied simultaneously,

$$\begin{aligned}&(D_{x_1}D_{x_{-1}}-2)\tau _{n}\cdot \tau _n=-2\tau _{n+1}\tau _{n-1}, \end{aligned}$$
(97)
$$\begin{aligned}&(D_{x_2}-D_{x_1}^2)\tau _{n+1}\cdot \tau _n=0, \end{aligned}$$
(98)
$$\begin{aligned}&D_{x_{-1}}D_{x_2}\tau _{n}\cdot \tau _n=2D_{x_1}\tau _{n-1}\cdot \tau _{n+1}. \end{aligned}$$
(99)

Thus, with the same dimension reduction and complex conjugacy conditions of the NLS equation (Ohta and Yang 2012a), and setting \(x_1=\xi \), \(x_2=\mathrm{i} t\), these multi-dimensional bilinear equations reduce to (94)–(96), and thus, the (fg) solutions for rogue waves of the NLS equation (91) are also bilinear solutions for rogue waves of the Kundu–Eckhaus Eq. (90) under the bilinear variable transformation (93).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Chen, J. & Yang, J. Rogue Waves in the Generalized Derivative Nonlinear Schrödinger Equations. J Nonlinear Sci 30, 3027–3056 (2020). https://doi.org/10.1007/s00332-020-09643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-020-09643-8

Keywords

Mathematics Subject Classification

Navigation