Skip to main content
Log in

Data-driven model order reduction with proper symplectic decomposition for flexible multibody system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Flexible multibody system plays an important role for the simulation of mechanism system. Due to the requirement of precision or high complexity of the model, the number of the finite elements of flexible multibody system will increase rapidly, which will lead to the decrease in the computational efficiency. In order to save the computational cost for simulating flexible multibody system, a novel model order reduction strategy based on the idea of data-driven model is proposed. In addition, the proposed method which is called symplectic model order reduction is in light of proper symplectic decomposition and symplectic Galerkin projection. At first, the snapshot matrix is obtained by an empirical data ensemble of the full-order model, and the transfer symplectic matrix of high dimension to low dimension is obtained by reduced-order bases using the method of cotangent lift. Then, the discrete governing equations of reduced-order model (ROM) are derived by symplectic discretization. Furthermore, a systematic study of model order reduction in system level and component level is provided in the paper. In addition, for adaption of ROM to parameter variation, a parameter interpolation method is offered to obtain the ROM. Eventually, several examples are used to verify the effectiveness of the proposed method, and the results show that the proposed method has better numerical accuracy and higher computational efficiency with respect to classic proper orthogonal decomposition-based ROM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Data availability

The data generated or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Yang, S.P., Li, S.H., Lu, J.Y.: Dynamics of vehicle–pavement coupled system based on a revised flexible roller contact tire model. Sci. China Ser. e–Tech. Sci. 52, 721–730 (2009)

    Article  MATH  Google Scholar 

  2. Hurmuzlu, Y., Génot, F., Brogliato, B.: Modeling, stability and control of a biped robots-a general framework. Automatica 40, 1647–1664 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kan, Z.Y., Li, F., Peng, H.J., Chen, B.S., Song, X.G.: Sliding cable modeling: a nonlinear complementarity function based framework. Mech. Syst. Signal Proc. 146, 107021 (2021)

    Article  Google Scholar 

  4. Li, P., Liu, C., Tian, Q., Hu, H.Y., Song, Y.P.: Dynamics of a deployable mesh reflector of satellite antenna: form-finding and modal analysis. J. Comput. Nonlinear Dyn. 11, 041017 (2016)

    Article  Google Scholar 

  5. Shabana, A.A., Schwertassek, R.: Equivalence of the floating frame of reference approach and finite element formulations. Int. J. Non-Linear Mech. 33, 417–432 (1998)

    Article  MATH  Google Scholar 

  6. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Engrg. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lestringant, C., Audoly, B., Kochmann, D.M.: A discrete, geometrically exact method for simulating nonlinear, elastic and inelastic beams. Comput. Methods Appl. Mech. Engrg. 361, 112741 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang, Y., Wei, C., Zhao, Y., Tan, C., Liu, Y.: Adaptive ANCF method and its application in planar flexible cables. Acta Mech. Sin. 34, 199–213 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhao, J., Tian, Q., Hu, H.Y.: Deployment dynamics of simplified spinning IKAROS solar sail via absolute coordinate based method. Acta Mech. Sin. 29, 132–142 (2013)

    Article  Google Scholar 

  10. Simo, J.C.: A finite strain beam formulation, the three–dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Engrg. 49, 55–70 (1985)

    Article  MATH  Google Scholar 

  11. Simo, J.C., Vu-Quoc, L.: A three–dimensional finite–strain rod model, Part II: Computational aspects. Comput. Methods Appl. Mech. Engrg. 58, 79–116 (1986)

    Article  MATH  Google Scholar 

  12. Tasora, A., Benatti, S., Mangoni, D., Garziera, R.: A geometrically exact isogeometric beam for large displacements and contacts. Comput. Methods Appl. Mech. Engrg. 358, 112635 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shabana, A.A.: An absolute nodal coordinates formulation for large rotation and deformation analysis of flexible bodies, Technical report No. MBS96-1-UIC, University of Illinois at Chicago, (1996)

  14. Tian, Q., Zhang, Y.Q., Chen, L.P., Ynag, J.Z.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60, 489–511 (2010)

    Article  MATH  Google Scholar 

  15. Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64, 25–47 (2011)

    Article  MATH  Google Scholar 

  16. Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Park K: J. Multi-body Dyn. 219(345), 355 (2006)

    Google Scholar 

  17. Dmitrochenko, O.N., Pogorelov, D.Y.: Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst. Dyn. 10(1), 17–43 (2003)

    Article  MATH  Google Scholar 

  18. Liu, C., Tian, Q., Hu, H.Y.: New spatial curved beam and cylindrical shell elements of gradiend-deficient absolute nodal coordinate formulation. Nonlinear Dyn. 70, 1903–1918 (2012)

    Article  Google Scholar 

  19. Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9, 283–309 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Escalona, J.L., Sugiyama, H., Shabana, A.A.: Modeling of structural flexibility in multibody railroad vehicle systems. Ven. Syst. Dyn. 51, 1027–1058 (2013)

    Article  Google Scholar 

  21. Tran, D.M.: Component mode synthesis methods using interface modes application to structure with cyclic symmetry. Comput. Struct. 79, 209–222 (2001)

    Article  Google Scholar 

  22. Gerstmayr, J., Ambrósio, J.A.C.: Component mode synthesis with constant mass and stiffness matrices applied to flexible multibody systems. Int. J. Numer. Methods Eng. 73, 1518–1546 (2008)

    Article  MATH  Google Scholar 

  23. Mikheev, G., pogorelov, D., Dmitrochenko, O.: Flexible multibody approaches for dynamical simulation of beam structures in drilling. Proceedings of the ASME international design engineering technical conference and computers and information in engineering conference, 6 V006T10A037 (2014)

  24. O’Shea, J.J., Jayakumar, P., Mechergui, D., Shabana, A.A., Wang, L.: Reference conditions and substructuring techniques in flexible multibody system dynamics. J. Comput. Nonlinear Dyn. 13, 0410 (2018)

    Google Scholar 

  25. Gruber, F.M., Rixen, D.J.: Dual Craig-Bampton component mode synthesis method for model order reduction of nonclassically damped linear systems. Mech. Syst. Signal Proc. 111, 678–698 (2018)

    Article  Google Scholar 

  26. Mahdiabadi, M.K., Tiso, P., Brandt, A., Rixen, D.J.: A non-intrusive model-order reduction of geometrically nonlinear structural dynamics using modal derivatives. Mech. Syst. Signal Proc. 147, 107126 (2021)

    Article  Google Scholar 

  27. Shiiba, T., Fehr, J., Eberhard, P.: Flexible multibody simulation of automative systems with non-modal model reduction techniques. Ven. Syst. Dyn. 50, 1905–1922 (2012)

    Article  Google Scholar 

  28. Fischer, M., Eberhard, P.: Linear model reduction of large scale industrial models in elastic multibody dynamics. Multibody Syst. Dyn. 31, 27–46 (2014)

    Article  MathSciNet  Google Scholar 

  29. Fehr, J., Eberhard, P.: Simulation of flexible multibody systems with non-modal model order reduction techniques. Multibody Syst. Dyn. 25, 313–334 (2011)

    Article  MATH  Google Scholar 

  30. Xiao, Z.H., Jiang, Y.L.: Dimension reduction for second-order systems by general orthogonal polynomials. Math. Comput. Model. Dyn. Syst. 20, 414–432 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fehr, J., Eberhard, P.: Error-controlled model reduction in flexible multibody dynamics. J. Comput. Nonlinear Dyn. 5, 031005 (2010)

    Article  Google Scholar 

  32. Fehr, J., Fischer, M., Haasdonk, B., Eberhard, P.: Greedy-based approximation of frequency-weighted Gramian matrices for model reduction in multibody dynamics. Z. Angew. Math. Mech. 93, 501–519 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kim, E., Kim, H., Cho, M.: Model order reduction of multibody system dynamics based on stiffness evaluation in the absolute nodal coordinate formulation. Nonlinear Dyn. 87, 1901–1915 (2017)

    Article  Google Scholar 

  34. Liang, J.X., Ma, O., Liu, C.S.: Model reduction of contact dynamics simulation using a modified Layponov balancing method. Front. Mech. Eng. 6, 383–391 (2011)

    Article  Google Scholar 

  35. Masoudi, R., Uchida, T., Mcphee, J.: Reduction of multibody dynamic models in automative systems using the proper orthogonal decomposition. J. Comput. Nonlinear Dyn. 10, 031007 (2015)

    Article  Google Scholar 

  36. Ilbeigi, S., Chelidze, D.: Persistent model order reduction for complex dynamical systems using smooth orthogonal decomposition. Mech. Syst. Signal Proc. 96, 125–138 (2017)

    Article  Google Scholar 

  37. Rong, B., Rui, X.T., Tao, L., Wang, G.P.: Theoretical modeling and numerical solution methods for flexible multibody system dynamics. Nonlinear Dyn. 98, 1519–1553 (2019)

    Article  Google Scholar 

  38. Brüls, O., Duysinx, P., Golinval, J.C.: The global modal parameterization for non-linear model-order reduction in flexible multibody dynamics. Int. J. Numer. Methods Eng. 69, 948–977 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Koronaki, E.D., Nikas, A.M., Boudouvis, A.G.: A data-driven reduced-order model of nonlinear process based on diffusion maps and artificial neural networks. Chem. Eng. J. 397, 125475 (2020)

    Article  Google Scholar 

  40. Bhattacharjee, S., Matouš, K.: A nonlinear data-driven reduced order model for computational homogenization with physica/pattern-guided sampling. Comput. Method Appl. Mech. Engrg. 359, 112657 (2020)

    Article  MATH  Google Scholar 

  41. Klus, S., Nüske, F., Koltai, P., Wu, H., Kevrekidis, I., Schütte, C., Noé, F.: Data-driven model reduction and transfer operator approximation. J. Nonlinear Sci. 28, 985–1010 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hijzazi, S., Stable, G., Mola, A., Rozza, G.: Data-driven POD-Galerkin reduced order model for turbulent flows. J. Comput. Phys. 416, 109513 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Guo, M., Hesthaven, J.S.: Data-driven model order modeling for time–dependent problems. Comput. Methods Appl. Mech. Engrg. 345, 75–99 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Peherstorfer, B., Willcox, K.: Dynamic data-driven reduced-order models. Comput. Methods Appl. Mech. Engrg. 291, 21–41 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Huang, D., Fuhg, J.N., Weißenfels, C., Wriggers, P.: A machine learning based plasticity model using proper orthogonal decomposition. Comput. Methods Appl. Mech. Engrg. 365, 113008 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ma, J., Dong, Sh., Chen, G.S., Peng, P., Qian, L.F.: A data-driven normal contact force model based on artificial neural network for complex contacting surfaces. Mech. Syst. Signal Proc. 156, 107612 (2021)

    Article  Google Scholar 

  47. Stadlmaryr, D., Witteveen, W., Steiner, W.: A generalized constraint reduction method for reduced order MBS models. Multibody Syst. Dyn. 41, 259–274 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Stadlmaryr, D., Witteveen, W., Steiner, W.: Reduction of physical and constraint degrees-of-freedom of redundant formulated multibody systems. J. Comput. Nonlinear Dyn. 11, 031010 (2016)

    Article  Google Scholar 

  49. Luo, K., Hu, H.Y., Liu, C., Tian, Q.: Model order reduction for dynamic simulation of a flexible multibody system via absolute nodal coordinate formulation. Comput. Methods Appl. Mech. Engrg 324, 573–594 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kerschen, G., Golinval, J.C., Vakakis, A.F., Bergman, L.A.: The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical system: An overview. Nonlinear Dyn. 41, 147–169 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ebert, F.: A note on POD model reduction methods for DAEs. Math. Comput. Model. Dyn. Syst. 16, 115–131 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Chou, Y., Chen, X., Sankaranarayanan, S.: A study of model-order reduction techniques for verification. Lect. Notes Comput. Sci. 10381, 98–113 (2017)

    Article  Google Scholar 

  53. Chatterjee, A.: An introduction to the proper orthogonal decomposition. Current ence. 78, 171–174 (2000)

    Google Scholar 

  54. Xu, H.G.: An SVD-like matrix decomposition and its application. Linear Alg. Appl 368, 1–24 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  55. Galbally, D., Fidkowski, K., Willcox, K., Ghattas, O.: Nonlinear model reduction for uncertainty quantification in large–scale inverse problems. Int. J. Numer. Methods Eng. 81, 1581–1608 (2010)

    MATH  Google Scholar 

  56. Lieu, T., Farhat, C., Lesoinne, M.: POD-based aeroelastic analysis of a complete F-16 configuration: ROM adaption and decomposition, AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (2005).

  57. Ophem, S.V., Walle, A.V.D., Deckers, E., Desmet, W.: Efficient vibro-acoustic identification of boundary conditions by law-rank parameteric model order reduction. Mech. Syst. Signal Proc. 111, 23–35 (2018)

    Article  Google Scholar 

  58. Ophem, S.V., Deckers, E., Desmet, W.: Parameteric model order reduction without a priori sampling for low rank changes in vibro-acoustic systems. Mech. Syst. Signal Proc. 130, 597–609 (2019)

    Article  Google Scholar 

  59. Taine, A.P.D., Amsallem, D.: An adaptive and efficient greedy procedure for optimal training of parametric reduced-order models. Int. J. Numer. Methods Eng. 102, 1262–1292 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  60. Kärcher, K., Boyaval, S., Grepl, M.A., Veroy, K.: Reduced basis approximation and a posteriori error bounds for 4D-var data assimilation. Optim Eng. 19, 663–695 (2018)

    Article  MathSciNet  Google Scholar 

  61. Thanh, T.B., Willcox, K.: Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic application. AIAA J. 46, 2520–2529 (2008)

    Article  Google Scholar 

  62. Hou, Y.S., Liu, C., Hu, H.Y.: Component-level proper orthogonal decomposition for flexible multibody systems. Comput. Methods Appl. Mech. Engrg. 361, 112690 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  63. Amsallem, D., Cortial, J., Carlberg, K., Farhat, C.: A method for interpolating on manifolds structural dynamics reduced-order models. Int. J. Numer. Methods Eng. 80, 1241–1258 (2009)

    Article  MATH  Google Scholar 

  64. Amsallem, D., Farhat, C.: Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J. 46, 1803–1813 (2008)

    Article  Google Scholar 

  65. Song, N.N., Peng, H.J., Xu, X.M., Wang, G.: Modeling and simulation of a planar rigid multibody system with multiple revolute clearance joints based on variational inequality. Mech. Mach. Theory. 154, 104053 (2020)

    Article  Google Scholar 

  66. Peng, H.J., Song, N.N., Kan, Z.Y.: A nonsmooth contact dynamic algorithm based on the symplectic method for multibody system analysis with unilateral constraints. Multibody Syst. Dyn. 49, 119–153 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  67. Peng, H.J., Song, N.N., Kan, Z.Y.: A novel nonsmooth dynamics method for multibody systems with friction and impact based on the symplectic discrete format. Int. J. Numer. Methods Eng. 121, 1530–1557 (2020)

    Article  MathSciNet  Google Scholar 

  68. Peng, H.J., Li, F., Liu, J.G., Ju, Z.J.: A symplectic instantaneous optimal control for robot trajectory tracking with differential-algebraic equation models. IEEE Trans. Ind. Electron. 67, 3819–3829 (2020)

    Article  Google Scholar 

  69. Song, N.N., Peng, H.J., Kan, Z.Y.: A novel nonsmooth approach for flexible multibody system with contact and friction in 3D space. Nonlinear Dyn. 102, 1375–1408 (2020)

    Article  Google Scholar 

  70. Lopez, L., Simoncini, V.: Preserving geometric properties of the exponential matrix by block krylov subspace methods. BIT 46, 813–830 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  71. Lall, S., Krysl, P., Marsden, J.E.: Structuring-preserving model reduction for mechanism systems. Phys. D. 184, 304–318 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  72. Buchfink, P., Bhatt, A., Haasdonk, B.: Symplectic model order reduction with non-orthogonal bases. Math. Comput. Appl. 24, 43 (2019)

    Google Scholar 

  73. Peng, L., Mohseni, K.: Symplectic model reduction of Hamiltonian systems. SIAM J. Sci. Comput. 38, A1–A27 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  74. Kharevych, L., W, W., Tong, Y., Kanso, E., Marsden, J.E., Schröder, P., Desbrun, M., USC, C.: Geometric, variational integrators for computer animation. Proc. EG/ACM Symp. Computer Animation, pp. 43–51 (2006)

  75. Perdigão. do. Carmo, M.: Riemanniann geometry, Birkhäuser Boston Berlin, 1992

Download references

Funding

The authors are grateful for the financial support of the National Science Foundation of China (11922203, 11772074, 12002072), the fellowship of China Postdoctoral Science Foundation (2020M680943). The authors also would like to thank Prof. Qiang Tian from School of Aerospace Engineering, Beijing Institute of Technology, for the valuable suggestions which are very helpful to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Definition 1

(Symplectic projection) Let \({{\varvec{\upomega}}} \in {\mathbb{R}}^{2n}\) be a high-dimensional variable, \({\mathbf{z}} \in {\mathbb{R}}^{2m}\) a low-dimensional variable, and the transfer matrix of \({{\varvec{\Pi}}} \in {\mathbb{R}}^{2n \times 2m}\). A linear projection from \({\mathbf{z}}\) to \({{\varvec{\upomega}}}\) has the expression: \({{\varvec{\upomega}}} \mapsto {{\varvec{\Pi}}}\;{\mathbf{z}}\), \(n,\;m \in {\mathbb{N}}^{*}\) and \(m \ll n\). We call the projection is a symplectic projection, and \({{\varvec{\Pi}}}\) is a symplectic matrix if the following relationship is satisfied:

$$ {{\varvec{\Pi}}}^{{\mathbf{T}}} {\mathbf{J}}_{2n \times 2n} {{\varvec{\Pi}}} = {\mathbf{J}}_{2m \times 2m} , $$
(20)

where in Eq. (20), the formula of \({\mathbf{J}}\) has the following expression:

$$ {\mathbf{J}}_{2i \times 2i} = \left[ {\begin{array}{*{20}c} {\mathbf{0}} & {{\mathbf{I}}_{2i \times 2i} } \\ { - {\mathbf{I}}_{2i \times 2i} } & {\mathbf{0}} \\ \end{array} } \right],\;i = m,n. $$
(21)

\({\mathbf{I}}\) is an identity matrix, and the subscript of \({\mathbf{I}}\) represents its dimension.

Definition 2

(Symplectic inverse) According to Definition 1, the symplectic matrix \({{\varvec{\Pi}}}\) belongs to \({\mathbb{R}}^{2n \times 2m}\). For each \({{\varvec{\Pi}}}\), we can define the inverse matrix of \({{\varvec{\Pi}}}\) have the following expression:

$$ {{\varvec{\Pi}}}^{ + } = {\mathbf{J}}_{2m \times 2m}^{{\mathbf{T}}} {{\varvec{\Pi}}}^{{\mathbf{T}}} {\mathbf{J}}_{2n \times 2n} \in {\mathbb{R}}^{2m \times 2n} . $$
(22)

According to Eq. (22), we can obtain:

$$ {{\varvec{\Pi}}}^{ + } {{\varvec{\Pi}}} = {\mathbf{J}}_{2m \times 2m}^{{\mathbf{T}}} {{\varvec{\Pi}}}^{{\mathbf{T}}} {\mathbf{J}}_{2n \times 2n} {{\varvec{\Pi}}} = {\mathbf{J}}_{2m \times 2m}^{{\mathbf{T}}} {\mathbf{J}}_{2m \times 2m} = {\mathbf{I}}_{2m \times 2m} \in {\mathbb{R}}^{2m \times 2m} . $$
(23)

Therefore, Eq. (23) can also meet the characteristic of inverse matrix.

Definition 3

Given an orthogonal matrix \({{\varvec{\Omega}}} \in {\mathbb{R}}^{n \times m}\), then the matrix meet the following relationship:

$$ {{\varvec{\Omega}}}^{{\mathbf{T}}} {{\varvec{\Omega}}} = {\mathbf{I}}_{m \times m} . $$
(24)

Proposition 1

The transfer matrix \({{\varvec{\Pi}}}\) obtained by the above procedure satisfies the properties of symplecticity and orthogonality.

Proof

  1. (1)

    Symplecticity

    According to Eq. (1), then we can have:

    $$ \begin{gathered} {{\varvec{\Pi}}}^{{\mathbf{T}}} {\mathbf{J}}_{2n \times 2n} {{\varvec{\Pi}}} = \left[ {\begin{array}{*{20}c} {{{\varvec{\Psi}}}_{n \times m} } & {\mathbf{0}} \\ {\mathbf{0}} & {{{\varvec{\Psi}}}_{n \times m} } \\ \end{array} } \right]^{{\mathbf{T}}} \left[ {\begin{array}{*{20}c} {\mathbf{0}} & {{\mathbf{I}}_{2n \times 2n} } \\ { - {\mathbf{I}}_{2n \times 2n} } & {\mathbf{0}} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {{{\varvec{\Psi}}}_{n \times m} } & {\mathbf{0}} \\ {\mathbf{0}} & {{{\varvec{\Psi}}}_{n \times m} } \\ \end{array} } \right]. \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \left[ {\begin{array}{*{20}c} {\mathbf{0}} & {{{\varvec{\Psi}}}_{n \times m}^{{\mathbf{T}}} {{\varvec{\Psi}}}_{n \times m} } \\ { - {{\varvec{\Psi}}}_{n \times m}^{{\mathbf{T}}} {{\varvec{\Psi}}}_{n \times m} } & {\mathbf{0}} \\ \end{array} } \right]. \hfill \\ \end{gathered} $$
    (25)

    With above results, \({{\varvec{\Psi}}}_{n \times m}\) is an orthogonal matrix, which is obtained by the thin SVD of snapshot matrix. Therefore, Eq. (25) is equal to the following formula:

    $$ {{\varvec{\Pi}}}^{{\mathbf{T}}} {\mathbf{J}}_{2n \times 2n} {{\varvec{\Pi}}} = {\mathbf{J}}_{2m \times 2m} . $$
    (26)

    Then, the transfer matrix \({{\varvec{\Pi}}}\) has the property of symplecticity according to Definition 1.

  2. (2)

    Orthogonality

    According to characteristic of the orthogonal matrix expressed in Definition 3, we can have:

    $$ {{\varvec{\Pi}}}^{{\mathbf{T}}} {{\varvec{\Pi}}} = \left[ {\begin{array}{*{20}c} {{{\varvec{\Psi}}}_{n \times m} } & {\mathbf{0}} \\ {\mathbf{0}} & {{{\varvec{\Psi}}}_{n \times m} } \\ \end{array} } \right]^{{\mathbf{T}}} \left[ {\begin{array}{*{20}c} {{{\varvec{\Psi}}}_{n \times m} } & {\mathbf{0}} \\ {\mathbf{0}} & {{{\varvec{\Psi}}}_{n \times m} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {{{\varvec{\Psi}}}_{n \times m}^{{\mathbf{T}}} {{\varvec{\Psi}}}_{n \times m} } & {\mathbf{0}} \\ {\mathbf{0}} & {{{\varvec{\Psi}}}_{n \times m}^{{\mathbf{T}}} {{\varvec{\Psi}}}_{n \times m} } \\ \end{array} } \right] $$
    (27)

    Because \({{\varvec{\Psi}}}_{n \times m}\) is orthogonal matrix, so \({{\varvec{\Psi}}}_{n \times m}^{{\mathbf{T}}} {{\varvec{\Psi}}}_{n \times m} = {\mathbf{I}}_{m \times m}\), and Eq. (27) is equal to an identity matrix, and its dimension is \({\mathbb{R}}^{2m \times 2m}\). Therefore, the transfer matrix \({{\varvec{\Pi}}}\) satisfies the characteristic of orthogonality. What’s more, in the light of Definition 2, we can have \({{\varvec{\Pi}}}^{{\mathbf{T}}} = {{\varvec{\Pi}}}^{ + }\).

(1): .

Appendix B

According to Eq. (11), the variation of the action \({\text{S}}\) with respect to \({\mathbf{q}}\) and \({\mathbf{p}}\), then the following formula can be obtained:

$$ \delta {\text{S}} = \delta {\mathbf{q}}^{{\mathbf{T}}} {\mathbf{p}}|_{{t_{n} }}^{{t_{n + 1} }} - \int_{{t_{n} }}^{{t_{n + 1} }} {\delta {\mathbf{q}}\left( {{\mathbf{M}}\left( {\mathbf{q}} \right){\mathbf{a}} + {{\varvec{\Phi}}}\left( {\mathbf{q}} \right)_{{\mathbf{q}}}^{{\mathbf{T}}} {{\varvec{\uplambda}}}_{b} - \frac{1}{2}{\mathbf{v}}^{{\mathbf{T}}} \frac{{\partial {\mathbf{M}}\left( {\mathbf{q}} \right)}}{{\partial {\mathbf{q}}}}{\mathbf{v}} + \frac{{\partial {\text{U}}\left( {\mathbf{q}} \right)}}{{\partial {\mathbf{q}}}} + {\mathbf{Q}}\left( {{\mathbf{q}},{\mathbf{v}},t} \right)} \right){\text{d}}t} , $$
(28)

where in Eq. (28), \({\mathbf{a}}\) is the acceleration; the third term, fourth term and fifth term in the integral sign represent the force of FMBS. Without loss of generality, in the following, all the force acted on the FMBS is expressed as F(q,v,t), which includes the external, damping and internal force. In addition, the second term in Eq. (28) is the differential equation, which is popular in the literature of multibody system. Therefore, the second term in Eq. (28) is equal to zero and the variation of action \({\text{S}}\) is:

$$ \delta {\text{S = }}\delta {\mathbf{q}}_{n + 1}^{{\mathbf{T}}} {\mathbf{p}}_{n + 1} - \delta {\mathbf{q}}_{n}^{{\mathbf{T}}} {\mathbf{p}}_{n} $$
(29)

According to Eq. (12), Eq. (29) can be rewritten as:

$$ \delta {\text{S = }}\delta {\mathbf{q}}_{r,n + 1}^{{\mathbf{T}}} {{\varvec{\Psi}}}^{{\mathbf{T}}} {\mathbf{\Psi p}}_{r,n + 1} - \delta {\mathbf{q}}_{r,n}^{{\mathbf{T}}} {{\varvec{\Psi}}}^{{\mathbf{T}}} {\mathbf{\Psi p}}_{r,n} = \delta {\mathbf{q}}_{r,n + 1}^{{\mathbf{T}}} {\mathbf{p}}_{r,n + 1} - \delta {\mathbf{q}}_{r,n}^{{\mathbf{T}}} {\mathbf{p}}_{r,n} . $$
(30)

The state vector is interpolated by the center interpolation method with second-order accuracy [74], then Eq. (30) is approximately equal to:

$$ \delta {\text{S}} \approx \delta \int_{{t_{n} }}^{{t_{n + 1} }} {\left( {\frac{1}{2}{\hat{\mathbf{v}}}^{{\text{T}}} {\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right){\hat{\mathbf{v}}} - {{\varvec{\Phi}}}\left( {{\hat{\mathbf{q}}}} \right)^{{\mathbf{T}}} {{\varvec{\uplambda}}}_{b} - {\mathbf{U}}\left( {{\hat{\mathbf{q}}}} \right)} \right){\text{d}}t} - \int_{{t_{n} }}^{{t_{n + 1} }} {\delta {\hat{\mathbf{q}}}^{{\text{T}}} {\mathbf{Q}}\left( {{\hat{\mathbf{q}}},{\hat{\mathbf{v}}},t} \right)dt} , $$
(31)

where in Eq. (31), \({\hat{\mathbf{v}}} = \left( {{\mathbf{q}}_{n + 1} - {\mathbf{q}}_{n} } \right)/h\), \({\hat{\mathbf{q}}} = \left( {{\mathbf{q}}_{n + 1} + {\mathbf{q}}_{n} } \right)/2\) and \(h = t_{n + 1} - t_{n}\).

Due to Eqs. (30) and (31), the ROM of FMBS can obtained:

$$ \begin{gathered} - {\mathbf{p}}_{r,n} = \int_{{t_{n} }}^{{t_{n + 1} }} {\left( {\frac{{\partial {\mathbf{q}}_{n} }}{{\partial {\mathbf{q}}_{r} }}} \right)^{{\mathbf{T}}} \left( {\frac{{\partial {\text{S}}}}{{\partial {\mathbf{q}}_{n} }}} \right)}^{{\mathbf{T}}} {\text{d}}t = \hfill \\ \;\;\;\;\;\;\;\;{{\varvec{\Psi}}}^{{\mathbf{T}}} \left( { - {\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right){\hat{\mathbf{v}}} + \frac{1}{4}h{\hat{\mathbf{v}}}^{{\mathbf{T}}} \frac{{\partial {\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right)}}{{\partial {\hat{\mathbf{q}}}}}{\hat{\mathbf{v}}} - \frac{1}{2}h{{\varvec{\Phi}}}\left( {{\hat{\mathbf{q}}}} \right)_{{\mathbf{q}}}^{{\mathbf{T}}} {{\varvec{\uplambda}}}_{b} - \frac{1}{2}h\frac{{\partial {\text{U}}\left( {{\hat{\mathbf{q}}}} \right)}}{{\partial {\hat{\mathbf{q}}}}} + \frac{1}{2}h{\mathbf{Q}}\left( {{\hat{\mathbf{q}}},{\hat{\mathbf{v}}},t} \right)} \right), \hfill \\ \end{gathered} $$
(32)
$$ \begin{gathered} {\mathbf{p}}_{r,n + 1} = \int_{{t_{n} }}^{{t_{n + 1} }} {\left( {\frac{{\partial {\mathbf{q}}_{n + 1} }}{{\partial {\mathbf{q}}_{r,n + 1} }}} \right)^{{\mathbf{T}}} \left( {\frac{{\partial {\text{S}}}}{{\partial {\mathbf{q}}_{n + 1} }}} \right)}^{{\mathbf{T}}} {\text{d}}t = \hfill \\ \;\;\;\;\;\;\;\;{{\varvec{\Psi}}}^{{\mathbf{T}}} \left( {{\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right){\hat{\mathbf{v}}} + \frac{1}{4}h{\hat{\mathbf{v}}}^{{\mathbf{T}}} \frac{{\partial {\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right)}}{{\partial {\hat{\mathbf{q}}}}}{\hat{\mathbf{v}}} + \frac{1}{2}h{{\varvec{\Phi}}}\left( {{\hat{\mathbf{q}}}} \right)_{{\mathbf{q}}}^{{\mathbf{T}}} {{\varvec{\uplambda}}}_{b} - \frac{1}{2}h\frac{{\partial {\text{U}}\left( {{\hat{\mathbf{q}}}} \right)}}{{\partial {\hat{\mathbf{q}}}}} + \frac{1}{2}h{\mathbf{Q}}\left( {{\hat{\mathbf{q}}},{\hat{\mathbf{v}}},t} \right)} \right). \hfill \\ \end{gathered} $$
(33)

Appendix C

The expressions of some new symbols in the Jacobian matrix of Eq. (16) have the following forms:

$$ {\mathbf{M}}2{\mathbf{q}} = - \frac{1}{h}{\mathbf{M}}_{r} - \frac{1}{2}\frac{{\partial \left( {{\mathbf{M}}_{r} {\hat{\mathbf{v}}}_{r} } \right)}}{{\partial {\hat{\mathbf{q}}}}}{{\varvec{\Psi}}}_{n \times m} , $$
$$ {\mathbf{\Phi \lambda }}_{b} 2{\mathbf{q}} = - \frac{1}{4}h\frac{{\partial \left( {{{\varvec{\Psi}}}_{n \times m}^{{\mathbf{T}}} {{\varvec{\Phi}}}\left( {{{\varvec{\Psi}}}_{n \times m} {\hat{\mathbf{q}}}_{r} } \right)_{{\mathbf{q}}}^{{\mathbf{T}}} } \right)_{r} {{\varvec{\uplambda}}}_{r,b} }}{{\partial {\hat{\mathbf{q}}}}}{{\varvec{\Psi}}}_{n \times m} , $$
$$ {\mathbf{F}}2{\mathbf{q}} = \frac{1}{4}h\frac{{\partial \left( {{{\varvec{\Psi}}}_{n \times m}^{{\mathbf{T}}} {\mathbf{F}}\left( {{{\varvec{\Psi}}}_{n \times m} {\hat{\mathbf{q}}}_{r} ,{{\varvec{\Psi}}}_{n \times m} {\hat{\mathbf{v}}}_{r} ,t} \right)} \right)}}{{\partial {\hat{\mathbf{q}}}}}{{\varvec{\Psi}}}_{n \times m} + \frac{1}{2}\frac{{\partial \left( {{{\varvec{\Psi}}}_{n \times m}^{{\mathbf{T}}} {\mathbf{F}}\left( {{{\varvec{\Psi}}}_{n \times m} {\hat{\mathbf{q}}}_{r} ,{{\varvec{\Psi}}}_{n \times m} {\hat{\mathbf{v}}}_{r} ,t} \right)} \right)}}{{\partial {\hat{\mathbf{v}}}}}{{\varvec{\Psi}}}_{n \times m} . $$

Appendix D

See Tables 9 , 10, 11, 12, 13 and 14.

Table 9 Max ϵrms for different number of ROBs with Young’s modulus E ∈ [0.01,1]GPa
Table 10 Max ϵrms of position at different truncated error based on system level and component level
Table 11 Max ϵrms of velocity at different truncated error based on system level and component level
Table 12 Max ϵrms of position at different truncated error based on system level and component level
Table 13 Max ϵrms of velocity at different truncated error based on system-level and component-level
Table 14 Max ϵrel of position and velocity at different truncated error ε

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Song, N. & Kan, Z. Data-driven model order reduction with proper symplectic decomposition for flexible multibody system. Nonlinear Dyn 107, 173–203 (2022). https://doi.org/10.1007/s11071-021-06990-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06990-3

Keywords

Navigation