Skip to main content
Log in

Model predictive control for electrodynamic tether geometric profile in orbital maneuvering with finite element state estimator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies the control of the geometric profile of a librating electrodynamic tether by model predictive control using the induced electric current in tether only. First, a high-fidelity multiphysics model of an electrodynamic tether system is built based on the nodal position finite element method and the orbital-motion-limited theory. Second, a state estimator is proposed to estimate the geometric profile of a librating electrodynamic tether, where only the positions and velocities at the tether ends are measurable. The non-measurable geometric profile of the tether between two ends is estimated by the high-fidelity multiphysics model with the input of the measurement at tether ends in the spatial domain. The extended Kalman filter is applied to estimate the geometric profile of the tether while avoiding the singularity or ambiguity in the estimation. Third, the geometric profile control of a librating electrodynamic tether is converted into a trajectory tracking problem of the underactuated electrodynamic tether system. The induced electric current in the tether is the only control input. Its value is optimized by the model predictive control method subject to the output and input control constraints. The numerical simulation results show that the proposed approach can effectively control the shape of the librating electrodynamic tether to the reference trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Code availability (software application or custom code)

The custom codes in the current study are available from the corresponding author on reasonable request.

References

  1. Shan, M., Guo, J., Gill, E.: Review and comparison of active space debris capturing and removal methods. Prog. Aeosp. Sci. 80(January), 18–32 (2016). https://doi.org/10.1016/j.paerosci.2015.11.001

    Article  Google Scholar 

  2. Sanmartin, J.R., Lorenzini, E.C., Martinez-Sanchez, M.: Electrodynamic tether applications and constraints. J. Spacecr. Rockets 47(3), 442–456 (2010). https://doi.org/10.2514/1.45352

    Article  Google Scholar 

  3. Li, G., Zhu, Z.H.: Multiphysics finite element modeling of current generation of bare flexible electrodynamic tether. J. Propul. Power 33(2), 408–419 (2017). https://doi.org/10.2514/1.b36211

    Article  Google Scholar 

  4. Li, G., Zhu Z.H.: Parameter influence on electron collection efficiency of a bare electrodynamic tether, Sci. China-Inf. Sci., 61(2), 022201:1–022201:12 (2017). https://doi.org/10.1007/s11432-017-9219-1.

  5. Li, G., Zhu, Z.H., Ruel, S., Meguid, S.A.: Multiphysics elastodynamic finite element analysis of space debris deorbit stability and efficiency by electrodynamic tethers. Acta Astronaut. 137(August), 320–333 (2017). https://doi.org/10.1016/j.actaastro.2017.04.025

    Article  Google Scholar 

  6. Corsi, J., Iess, L.: Stability and control of electrodynamic tethers for de-orbiting applications. Acta Astronaut. 48(5), 491–501 (2001). https://doi.org/10.1016/S0094-5765(01)00049-2

    Article  Google Scholar 

  7. Williams, P.: Electrodynamic tethers under forced-current variations part II: flexible-tether estimation and control. J. Spacecr. Rockets 47(2), 320–333 (2010). https://doi.org/10.2514/1.45733

    Article  Google Scholar 

  8. Wen, H., Yu, B., Jin, D.: Energy-based current control for stabilizing a flexible electrodynamic tether system. J. Beijing Inst. Technol. 60(1), 1–4 (2017). https://doi.org/10.15918/j.jbit1004-0579.201726.0101

    Article  Google Scholar 

  9. Tortora, P., Somenzi, L., Iess, L., Licata, R.: Small mission design for testing in-orbit an electrodynamic tether deorbiting system. J. Spacecr. Rockets 43(4), 883–892 (2006). https://doi.org/10.2514/1.15359

    Article  Google Scholar 

  10. Tragesser, S.G., San, H.: Orbital maneuvering with electrodynamic tethers. J. Guid. Control Dyn. 26(5), 805–810 (2003). https://doi.org/10.2514/2.5115

    Article  Google Scholar 

  11. Li, G., Zhu, Z.H., Cain, J., Newland, F., Czekanski, A.: Libration control of bare electrodynamic tethers considering elastic–thermal–electrical coupling. J. Guid. Control Dyn. 39(3), 642–654 (2016). https://doi.org/10.2514/1.g001338

    Article  Google Scholar 

  12. Li, G., Zhu, Z.H.: Estimation of flexible space tether state based on end measurement by finite element Kalman filter state estimator. Adv. Space Res. 67(10), 3282–3293 (2021). https://doi.org/10.1016/j.asr.2021.01.057

    Article  Google Scholar 

  13. Sanmartin, J.R., Martinez-Sanchez, M., Ahedo, E.: Bare wire anodes for electrodynamic tethers. J. Propul. Power 9(3), 353–360 (1993). https://doi.org/10.2514/3.23629

    Article  Google Scholar 

  14. Li, G., Zhu, Z.H., Meguid, S.A.: Libration and transverse dynamic stability control of flexible bare electrodynamic tether systems in satellite deorbit. Aerosp. Sci. Technol. 49, 112–129 (2016). https://doi.org/10.1016/j.ast.2015.11.036

    Article  Google Scholar 

  15. Wang, C., Li, G., Zhu, Z.H., Li, A.: Mass ratio of electrodynamic tether to spacecraft on deorbit stability and efficiency. J. Guid. Control Dyn. 39(9), 2192–2198 (2016). https://doi.org/10.2514/1.g000429

    Article  Google Scholar 

  16. Sun, F.J., Zhu, Z.H., LaRosa, M.: Dynamic modeling of cable towed body using nodal position finite element method. Ocean Eng. 38(4), 529–540 (2011). https://doi.org/10.1016/j.oceaneng.2010.11.016

    Article  Google Scholar 

  17. Li, G.Q., Zhu, Z.H.: Long-term dynamic modeling of tethered spacecraft using nodal position finite element method and symplectic integration. Celest. Mech. Dyn. Astron. 123(4), 363–386 (2015). https://doi.org/10.1007/s10569-015-9640-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, G., Zhu, Z.H.: Precise analysis of deorbiting by electrodynamic tethers using coupled multiphysics finite elements. J. Guid. Control Dyn. 40(12), 3348–3357 (2017). https://doi.org/10.2514/1.g002738

    Article  Google Scholar 

  19. Reif, K., Unbehauen, R.: The extended Kalman filter as an exponential observer for nonlinear systems. IEEE Trans. Signal Process. 47(8), 2324–2328 (1999). https://doi.org/10.1109/78.774779

    Article  MathSciNet  MATH  Google Scholar 

  20. Babacan, E.K., Ozbek, L., Efe, M.: Stability of the extended Kalman filter when the states are constrained. IEEE Trans. Autom. Control 53(11), 2707–2711 (2008). https://doi.org/10.1109/TAC.2008.2008333

    Article  MathSciNet  MATH  Google Scholar 

  21. Sun, X., Zhang, H., Cai, Y., Wang, S., Chen, L.: Hybrid modeling and predictive control of intelligent vehicle longitudinal velocity considering nonlinear tire dynamics. Nonlinear Dyn. 97(2), 1051–1066 (2019). https://doi.org/10.1007/s11071-019-05030-5

    Article  MATH  Google Scholar 

  22. Williams, R.L., Lawrence D.A.: Linear state-space control systems, Wiley Online Library, pp 174–176, (2007).

  23. van de Walle, A., Naets, F., Desmet, W.: Virtual microphone sensing through vibro-acoustic modelling and Kalman filtering. Mech. Syst. Signal Proc. 104(May), 120–133 (2018). https://doi.org/10.1016/j.ymssp.2017.08.032

    Article  Google Scholar 

  24. Franchi, L., Feruglio, L., Mozzillo, R., Corpino, S.: Model predictive and reallocation problem for CubeSat fault recovery and attitude control. Mech. Syst. Signal Proc. 98(January), 1034–1055 (2018). https://doi.org/10.1016/j.ymssp.2017.05.039

    Article  Google Scholar 

  25. Li, P., Zhu, Z.H.: Line-of-sight nonlinear model predictive control for autonomous rendezvous in elliptical orbit. Aerosp. Sci. Technol. 69(October), 236–243 (2017). https://doi.org/10.1016/j.ast.2017.06.030

    Article  Google Scholar 

  26. Zhu, M., Chen, H., Xiong, G.: A model predictive speed tracking control approach for autonomous ground vehicles. Mech. Syst. Signal Proc. 87(March), 138–152 (2017). https://doi.org/10.1016/j.ymssp.2016.03.003

    Article  Google Scholar 

  27. Zhang, P., Wu, Z., Meng, Y., Tan, M., Yu, J.: Nonlinear model predictive position control for a tail-actuated robotic fish. Nonlinear Dyn. 101(4), 2235–2247 (2020). https://doi.org/10.1007/s11071-020-05963-2

    Article  Google Scholar 

  28. Sidje, R.B.: Expokit: A software package for computing matrix exponentials. ACM Trans. Math. Softw. (TOMS) 24(1), 130–156 (1998). https://doi.org/10.1145/285861.285868

    Article  MATH  Google Scholar 

  29. Kassaeiyan, P., Tarvirdizadeh, B., Alipour, K.: Control of tractor-trailer wheeled robots considering self-collision effect and actuator saturation limitations. Mech. Syst. Signal Proc. 127(July), 388–411 (2019). https://doi.org/10.1016/j.ymssp.2019.03.016

    Article  Google Scholar 

  30. Li, D., Cao, H., Zhang, X., Chen, X., Yan, R.: Model predictive control based active chatter control in milling process. Mech. Syst. Signal Proc. 128(August), 266–281 (2019). https://doi.org/10.1016/j.ymssp.2019.03.047

    Article  Google Scholar 

  31. Haghighat, S., Liu, H.H.T., Martins, J.R.R.A.: Model-predictive gust load alleviation controller for a highly flexible aircraft. J. Guid. Control Dyn. 35(6), 1751–1766 (2012). https://doi.org/10.2514/1.57013

    Article  Google Scholar 

  32. Rawlings, J.B., Mayne, D.Q., Diehl, M.: Model predictive control: theory, computation, and design. Nob Hill Publishing Madison, WI (2017)

    Google Scholar 

  33. Zong, L., Luo, J., Wang, M., Yuan, J.: Obstacle avoidance handling and mixed integer predictive control for space robots. Adv. Space Res. 61(8), 1997–2009 (2018). https://doi.org/10.1016/j.asr.2018.01.025

    Article  Google Scholar 

  34. Wen, H., Jin, D.: De-spinning of tethered space target via partially invariable deployment with tension control. Nonlinear Dyn. 96(1), 637–645 (2019). https://doi.org/10.1007/s11071-019-04811-2

    Article  MATH  Google Scholar 

  35. Wen, H., Zhu, Z.H., Jin, D., Hu, H.: Model predictive control with output feedback for a deorbiting electrodynamic tether system. J. Guid. Control Dyn. 39(6), 2451–2456 (2016). https://doi.org/10.2514/1.G000535

    Article  Google Scholar 

  36. Li, P., Zhu, Z.H.: Model predictive control for spacecraft rendezvous in elliptical orbit. Acta Astronaut. 146(May), 339–348 (2018). https://doi.org/10.1016/j.actaastro.2018.03.025

    Article  Google Scholar 

Download references

Funding

This work is supported by the Discovery Grant (RGPIN-2018–05991) and Discovery Accelerator Supplements Grant (RGPAS-2018–522709) of Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Gangqiang Li was the co-investigator of the project, conducted formal analysis and methodology development, coding, data analysis, and draft writing. Dr. Zheng H. Zhu was the principal investigator of the project, led the conceptualization and methodology development, formal analysis, acquired funding, project administration, and writing and editing of paper.

Corresponding author

Correspondence to Zheng H. Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Zhu, Z.H. Model predictive control for electrodynamic tether geometric profile in orbital maneuvering with finite element state estimator. Nonlinear Dyn 106, 473–489 (2021). https://doi.org/10.1007/s11071-021-06869-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06869-3

Keywords

Navigation