Skip to main content
Log in

Nonlinear model predictive position control for a tail-actuated robotic fish

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Position control is a significant technique for the underwater application of robotic fish; however, it is also very challenging due to the underactuated property and input coupling of system dynamics. In this article, a two-stage orientation–velocity nonlinear model predictive controller is proposed to solve this problem. A scaled averaging model of tail-actuated robotic fish is constructed at first. Then, the novel strategy based on orientation and velocity control is developed as well as proved to be equivalent with position control in the sense of Lyapunov. Furthermore, a nonlinear model predictive controller with a two-stage switching strategy is designed to regulate the orientation and velocity error. Finally, the simulation results demonstrate the superiority of the proposed control algorithm compared with other methods. Particularly, there exists an interesting twist-braking behavior in simulation, which indicates that the proposed method makes better use of the system dynamics. The proposed method is efficient for not only bionic robotic fish but also other aquatic underactuated robots, which offers new insight into the position control of underwater robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sfakiotakis, M., Lane, D.M., Davies, J.B.C.: Review of fish swimming modes for aquatic locomotion. IEEE J. Ocean. Eng. 24(2), 237–252 (1999)

    Article  Google Scholar 

  2. Fish, F.E.: Advantages of natural propulsive systems. Mar. Technol. Soc. J. 47(5), 37–44 (2013)

    Article  Google Scholar 

  3. Li, X., Ren, Q., Xu, J.-X.: An equilibrium-based learning approach with application to robotic fish. Nonlinear Dyn. 94(4), 2715–2725 (2018)

    Article  Google Scholar 

  4. Pollard, B., Fedonyuk, V., Tallapragada, P.: Swimming on limit cycles with nonholonomic constraints. Nonlinear Dyn. 97(4), 2453–2468 (2019)

    Article  Google Scholar 

  5. Saimek, S., Li, P.Y.: Motion planning and control of a swimming machine. Int. J. Robot. Res. 23(1), 27–53 (2004)

    Article  Google Scholar 

  6. Li, X., Ren, Q., Xu, J.: Precise speed tracking control of a robotic fish via iterative learning control. IEEE Trans. Ind. Electron. 63(4), 2221–2228 (2015)

    Google Scholar 

  7. Yu, J., Sun, F., Xu, D., Tan, M.: Embedded vision-guided 3-D tracking control for robotic fish. IEEE Trans. Ind. Electron. 63(1), 355–363 (2016)

    Article  Google Scholar 

  8. Yu, J., Wu, Z., Yang, X., Yang, Y., Zhang, P.: Underwater target tracking control of an untethered robotic fish with a camera stabilizer. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2963246

    Article  Google Scholar 

  9. Chen, S., Wang, J., Tan, X.: Backstepping-based hybrid target tracking control for a carangiform robotic fish. In: Proceedings of ASME Dynamic Systems and Control Conference, DSCC2013-3963 (2013)

  10. Liu, J., Wu, Z., Yu, J., Tan, M.: Sliding mode fuzzy control-based path-following control for a dolphin robot. Sci. China Inf. Sci. 61(2), 024201:1–024201:3 (2018)

    Article  MathSciNet  Google Scholar 

  11. Castaño, M.L., Tan, X.: Model predictive control-based path-following for tail-actuated robotic fish. J. Dyn. Syst. Meas. Control 141(7), 071012 (2019)

    Article  Google Scholar 

  12. Castaño, M. L., Tan, X.: Backstepping control-based trajectory tracking for tail-actuated robotic fish. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 839–844 (2019)

  13. Zheng, X., Chen, H., Jiao, O., Xiong, M., Zhang, W., Xie, G.: Model predictive tracking control design for a robotic fish with controllable barycentre. In: Proceedings of the 45th Annual Conference of the IEEE Industrial Electronics Society, pp. 5237–5242 (2019)

  14. Zhang, S., Jiang, B., Chen, X., Liang, J., Cui, P., Guo, X.: Modeling and dynamic control of a class of semibiomimetic robotic fish. Complexity 2018, 4657235 (2018)

    MATH  Google Scholar 

  15. Suebsaiprom, P., Lin, C.: Maneuverability modeling and trajectory tracking for fish robot. Control Eng. Pract. 45, 22–36 (2015)

    Article  Google Scholar 

  16. Zhang, Z., Yang, T., Zhang, T., Zhou, F., Cen, N., Li, T., Xie, G.: Global vision-based formation control of soft robotic fish swarm. Soft Robot. (2020). https://doi.org/10.1089/soro.2019.0174

    Article  Google Scholar 

  17. Ji, Z., Lin, H., Cao, S., Qi, Q., Ma, H.: The complexity in complete graphic characterizations of multiagent controllability. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.2972403

    Article  Google Scholar 

  18. Sun, Y., Ji, Z., Liu, K.: Event-based consensus for general linear multiagent systems under switching topologies. Complexity 2020, 5972749 (2020)

    MATH  Google Scholar 

  19. Yang, E., Ikeda, T., Mita, T.: Nonlinear tracking control of a nonholonomic fish robot in chained form. In: Proceedings of SICE Annual Conference, pp. 290–295 (2003)

  20. Yu, J., Tan, M., Wang, S., Chen, E.: Development of a biomimetic robotic fish and its control algorithm. IEEE Trans. Syst. Man. Cybern. Part B Cybern. 34(4), 1798–1810 (2004)

    Article  Google Scholar 

  21. Kato, N.: Control performance in the horizontal plane of a fish robot with mechanical pectoral fins. IEEE J. Ocean. Eng. 25(1), 121–129 (2000)

    Article  Google Scholar 

  22. Liang, X., Li, Y., Peng, Z., Zhang, J.: Nonlinear dynamics modeling and performance prediction for underactuated AUV with fins. Nonlinear Dyn. 84(1), 237–249 (2016)

    Article  Google Scholar 

  23. Sun, Z., Zhang, G., Yang, J., Zhang, W.: Research on the sliding mode control for underactuated surface vessels via parameter estimation. Nonlinear Dyn. 91(2), 1163–1175 (2018)

    Article  Google Scholar 

  24. Mazenc, F., Pettersen, K., Nijmeijer, H.: Global uniform asymptotic stabilization of an underactuated surface vessel. IEEE Trans. Autom. Control 47(10), 1759–1762 (2002)

    Article  MathSciNet  Google Scholar 

  25. Sankaranarayanan, V., Mahindrakar, A. D., Banavar, R. N.: A switched finite-time point-to-point control strategy for an underactuated underwater vehicle. In: Proceedings of IEEE Conference on Control Applications, pp. 690–694 (2003)

  26. Yang, E., Gu, D.: Nonlinear formation-keeping and mooring control of multiple autonomous underwater vehicles. IEEE/ASME Trans. Mechatron. 12(2), 164–178 (2007)

    Article  MathSciNet  Google Scholar 

  27. Heshmati-Alamdari, S., Karras, G.C., Marantos, P., Kyriakopoulos, K.J.: A robust predictive control approach for underwater robotic vehicles. IEEE Trans. Control Syst. Technol. (2019). https://doi.org/10.1109/TCST.2019.2939248

    Article  Google Scholar 

  28. Wang, W., Mateos, L. A., Park, S., Leoni, P., Gheneti, B., Duarte, F., Ratti, C., Rus, D.: Design, modeling, and nonlinear model predictive tracking control of a novel autonomous surface vehicle. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 6189–6196 (2018)

  29. Wang, J., Tan, X.: Averaging tail-actuated robotic fish dynamics through force and moment scaling. IEEE Trans. Robot. 31(4), 906–917 (2015)

    Article  Google Scholar 

  30. Lighthill, M. J.: Large-amplitude elongated-body theory of fish locomotion. In: Proceedings of the Royal Society of London. Series B. Biological Sciences, pp. 125–138 (1971)

  31. Slotine, J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, NJ (1991)

    MATH  Google Scholar 

  32. Grüne, G., Pannek, J.: Nonlinear Model Predictive Control Theory and Algorithms, 2nd edn. Springer, Switzerland (2017)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61725305, Grant 61973303, Grant 61633020, Grant U1909206, and Grant 61421004, and in part by Key Research Program of Frontier Sciences, CAS, under Grant QYZDJ-SSW-JSC004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junzhi Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 2509 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Wu, Z., Meng, Y. et al. Nonlinear model predictive position control for a tail-actuated robotic fish. Nonlinear Dyn 101, 2235–2247 (2020). https://doi.org/10.1007/s11071-020-05963-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05963-2

Keywords

Navigation