Skip to main content
Log in

Nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Compared with the conventional rigid origami, the flexible origami has larger deformation and more complicated mechanical property and nonlinear problems due to self-contact and friction. In this paper, the nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction is investigated. Firstly, a symmetric rigid origami model is presented based on the forward recursive formulation without the inclusion of contact, and then, a discretized dynamic model for flexible origami structures is established by using thin plate element of absolute nodal coordinate formulation. To consider the normal contact, the penalty method is adopted to enforce the nonpenetration condition. In order to improve the precision and applicability, a modified mixed contact method considering the friction effect is developed by integrating the advantages of node-to-surface, edge-to-surface and surface-to-surface contact elements. This proposed method can effectively avoid the mutual penetration of different corner nodes, element edges and contact element surfaces. Moreover, the tangential friction model considering the stick–slip transition and large sliding is established by the regularized Coulomb friction law. A series of numerical examples validate the effectiveness of the proposed mixed contact method considering the friction and show the advantage of the flexible model compared with the rigid origami model. Furthermore, the nonlinear performance of the flexible origami-based deployable structures due to the contact and friction is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Availability of data and material

All the data related to the current work are available when required.

Code availability

The custom codes cannot be shared for this time as they are related to another ongoing study.

References

  1. Wang, Z., Jing, L., Yao, K., Yang, Y., Zheng, B., Soukoulis, C.M., Chen, H., Liu, Y.: Origami-based reconfigurable metamaterials for tunable chirality. Adv. Mater. 29(27), 1700412 (2017). https://doi.org/10.1002/adma.201700412

    Article  Google Scholar 

  2. Liu, C., Tian, Q., Yan, D., Hu, H.: Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF. Comput. Meth. Appl. Mech. Eng. 258, 81–95 (2013)

    Article  MathSciNet  Google Scholar 

  3. Arya, M., Webb, D., McGown, J., Lisman, P.D., Shaklan, S., Bradford, S.C., Steeves, J., Hilgemann, E., Trease, B., Thomson, M., Warwick, S., Freebury, G., Gull, J.: Starshade mechanical design for the Habitable Exoplanet imaging mission concept (HabEx). In: SPIE Optical Engineering + Applications, San Diego, Chile 2017

  4. Baek, S.-M., Yim, S., Chae, S.-H., Lee, D.-Y., Cho, K.-J.: Ladybird beetle–inspired compliant origami. Sci. Robot. (2020). https://doi.org/10.1126/scirobotics.aaz6262

    Article  Google Scholar 

  5. Zhang, Z., Chen, G., Wu, H., Kong, L., Wang, H.: A pneumatic/cable-driven hybrid linear actuator with combined structure of origami chambers and deployable mechanism. IEEE Robot. Autom. Lett. 5(2), 3564–3571 (2020). https://doi.org/10.1109/LRA.2020.2976324

    Article  Google Scholar 

  6. Fang, J., Yuan, J., Wang, M., Xiao, L., Yang, J., Lin, Z., Xu, P., Hou, L.: Novel accordion-inspired foldable pneumatic actuators for knee assistive devices. Soft Robot. 7(1), 95–108 (2020). https://doi.org/10.1089/soro.2018.0155

    Article  Google Scholar 

  7. You, Z.: Folding structures out of flat materials. Science 345(6197), 623–624 (2014). https://doi.org/10.1126/science.1257841

    Article  Google Scholar 

  8. Xiang, X.M., Lu, G., You, Z.: Energy absorption of origami inspired structures and materials. Thin-Walled Struct. 157, 107130 (2020). https://doi.org/10.1016/j.tws.2020.107130

    Article  Google Scholar 

  9. Peraza Hernandez, E., Hartl, D., Lagoudas, D.: Active origami: modeling, design, and applications. Springer, Cham (2018)

    MATH  Google Scholar 

  10. Belcastro, S., Hull, T.C.: Modelling the folding of paper into three dimensions using affine transformations. Linear Algebra Appl. 348(1), 273–282 (2002). https://doi.org/10.1016/S0024-3795(01)00608-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Tachi, T.: Simulation of rigid origami. In: Lang, R.J. (ed.) Origami 4: Fourth International Meeting of Origami Science, Mathematics, and Education. pp. 175–187. (2009)

  12. Tachi, T.: Geometric considerations for the design of rigid origami structures. In: Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium, Shanghai, China (2010)

  13. Feng, H., Peng, R., Ma, J., Chen, Y.: Rigid foldability of generalized triangle twist origami pattern and its derived 6R linkages. J. Mech. Robot. 10, 051003 (2018). https://doi.org/10.1115/1.4040439

    Article  Google Scholar 

  14. Liu, Z., Qiu, H., Li, X., Yang, S.: Review of large spacecraft deployable membrane antenna structures. Chin. J. Mech. Eng. 30(6), 1447–1459 (2017)

    Article  Google Scholar 

  15. Cai, J., Ren, Z., Ding, Y., Deng, X., Xu, Y., Feng, J.: Deployment simulation of foldable origami membrane structures. Aerosp. Sci. Technol. 67, 343–353 (2017)

    Article  Google Scholar 

  16. Miguel, E., Tamstorf, R., Bradley, D., Schvartzman, S.C., Thomaszewski, B., Bickel, B., Matusik, W., Marschner, S., Otaduy, M.A.: Modeling and estimation of internal friction in cloth. ACM Trans. Gr. 32(6), 212 (2013). https://doi.org/10.1145/2508363.2508389

    Article  Google Scholar 

  17. Ma, J., Feng, H., Chen, Y., Hou, D., You, Z.: Fold. Tubular Waterbomb. Res. 2020, 1735081 (2020). https://doi.org/10.34133/2020/1735081

    Article  Google Scholar 

  18. Ma, J., Zang, S., Feng, H., Chen, Y., You, Z.: Theoretical characterization of a non-rigid-foldable square-twist origami for property programmability. Int. J. Mech. Sci. 189, 105981 (2021). https://doi.org/10.1016/j.ijmecsci.2020.105981

    Article  Google Scholar 

  19. Yuan, L., Dai, H., Song, J., Ma, J., Chen, Y.: The behavior of a functionally graded origami structure subjected to quasi-static compression. Mater. Des. 189, 108494 (2020). https://doi.org/10.1016/j.matdes.2020.108494

    Article  Google Scholar 

  20. Liu, K., Paulino, G.H.: Nonlinear mechanics of non-rigid origami: an efficient computational approach. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. (2017). https://doi.org/10.1098/rspa.2017.0348

  21. Xu, Y., Guan, F.: Fold methods and deployment analysis of deployable membrane structure. Eng. Mech. 25(5), 176–181 (2008)

    Google Scholar 

  22. Fang, H., Wang, K.W., Li, S.: Asymmetric energy barrier and mechanical diode effect from folding multi-stable stacked-origami. Extreme Mech. Lett. 17, 7–15 (2017). https://doi.org/10.1016/j.eml.2017.09.008

    Article  Google Scholar 

  23. Zhang, Q., Fang, H., Xu, J.: Programmable stopbands and supratransmission effects in a stacked Miura-origami metastructure. Phys. Rev. E 101(4), 042206 (2020). https://doi.org/10.1103/PhysRevE.101.042206

    Article  MathSciNet  Google Scholar 

  24. Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997)

    Article  MathSciNet  Google Scholar 

  25. Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Part K J. Multi-body Dyn. 219(4), 345–355 (2005). https://doi.org/10.1243/146441905x50678

    Article  Google Scholar 

  26. Dmitrochenko, O., Mikkola, A.: Two simple triangular plate elements based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 3(4),(2008)

    Article  Google Scholar 

  27. Ren, H.: Fast and robust full-quadrature triangular elements for thin plates/shells with large deformations and large rotations. J. Comput. Nonlinear Dyn. 10(5), 051018 (2015). https://doi.org/10.1115/1.4030212

    Article  Google Scholar 

  28. Sun, D., Liu, C., Hu, H.: Dynamic computation of 2D segment-to-segment frictionless contact for a flexible multibody system subject to large deformation. Mech. Mach. Theory 140, 350–376 (2019). https://doi.org/10.1016/j.mechmachtheory.2019.06.011

    Article  Google Scholar 

  29. Yuan, T., Liu, Z., Zhou, Y., Liu, J.: Dynamic modeling for foldable origami space membrane structure with contact-impact during deployment. Multibody Syst. Dyn. 50(1), 1–24 (2020). https://doi.org/10.1007/s11044-020-09737-x

    Article  MathSciNet  MATH  Google Scholar 

  30. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Influence of the contact—impact force model on the dynamic response of multi-body systems. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 220(1), 21–34 (2006). https://doi.org/10.1243/146441906x77722

    Article  Google Scholar 

  31. Kikuuwe, R., Takesue, N., Sano, A., Mochiyama, H., Fujimoto, H.: Fixed-step friction simulation: from classical Coulomb model to modern continuous models. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, United States, pp. 1009–1016 (2005)

  32. Pennestrì, E., Rossi, V., Salvini, P., Valentini, P.P.: Review and comparison of dry friction force models. Nonlinear Dyn. 83(4), 1785–1801 (2016). https://doi.org/10.1007/s11071-015-2485-3

    Article  MATH  Google Scholar 

  33. Cha, H.-Y., Choi, J., Ryu, H.S., Choi, J.H.: Stick-slip algorithm in a tangential contact force model for multi-body system dynamics. J. Mech. Sci. Technol. 25(7), 1687–1694 (2011). https://doi.org/10.1007/s12206-011-0504-y

    Article  Google Scholar 

  34. Yu, L., Zhao, Z., Tang, J., Ren, G.: Integration of absolute nodal elements into multibody system. Nonlinear Dyn. 62(4), 931–943 (2010). https://doi.org/10.1007/s11071-010-9775-6

    Article  MathSciNet  MATH  Google Scholar 

  35. Yu, L., Zhao, Z., Ren, G.: Multibody dynamic model of web guiding system with moving web. J. Dyn. Syst. Meas. Contr. 132(5), 051004 (2010). https://doi.org/10.1115/1.4001797

    Article  Google Scholar 

  36. MSC.Software: Adams/View help. (2012)

  37. Sun, D., Liu, C., Hu, H.: Dynamic computation of 2D segment-to-segment frictional contact for a flexible multibody system subject to large deformations. Mech. Mach. Theory 158, 104197 (2021). https://doi.org/10.1016/j.mechmachtheory.2020.104197

    Article  Google Scholar 

  38. Benson, D.J., Hallquist, J.O.: A single surface contact algorithm for the post-buckling analysis of shell structures. Comput. Meth. Appl. Mech. Eng. 78(2), 141–163 (1990). https://doi.org/10.1016/0045-7825(90)90098-7

    Article  MathSciNet  MATH  Google Scholar 

  39. Konyukhov, A., Schweizerhof, K.: Computational Contact Mechanics: Geometrically Exact Theory for Arbitrary Shaped Bodies. Computational Contact Mechanics. Springer, . Berlin (2013)

    Book  Google Scholar 

  40. Konyukhov, A., Izi, R.: Introduction To Computational Contact Mechanics: A Geometrical Approach Wiley Series In Computational Mechanics. Wiley, New York (2015)

    MATH  Google Scholar 

  41. Bae, D.-S., Haug, E.J.: A recursive formulation for constrained mechanical system dynamics: part I open loop systems. Mech. Struct. Mach. 15(3), 359–382 (1987). https://doi.org/10.1080/08905458708905124

    Article  Google Scholar 

  42. Hong, J.: Computational Dynamics of Multibody Systems. Higher Education Press, Beijing (1999)

    Google Scholar 

  43. Peraza Hernandez, E.A., Hartl, D.J., Lagoudas, D.C.: Active Origami: Modeling, Design, and Applications. Springer International Publishing, Cham (2019)

    Book  Google Scholar 

  44. De Focatiis, D.S.A., Guest, S.D.: Deployable membranes designed from folding tree leaves. Philosophical transactions of the royal society of london series A: mathematical. Phys. Eng. Sci. 360(1791), 227–238 (2002)

    Article  Google Scholar 

  45. Dmitrochenko, O.N., Pogorelov, D.Y.: Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Sys.Dyn. 10(1), 17–43 (2003)

    Article  Google Scholar 

  46. Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8(3), 031016 (2013). https://doi.org/10.1115/1.4023487

    Article  Google Scholar 

  47. Hyldahl, P., Mikkola, A.M., Balling, O., Sopanen, J.T.: Behavior of thin rectangular ANCF shell elements in various mesh configurations. Nonlinear Dyn. 78(2), 1277–1291 (2014). https://doi.org/10.1007/s11071-014-1514-y

    Article  Google Scholar 

  48. Konyukhov, A., Schweizerhof, K.: Geometrically exact covariant approach for contact between curves. Comput. Meth. Appl. Mech. Eng. 199(37), 2510–2531 (2010). https://doi.org/10.1016/j.cma.2010.04.012

    Article  MathSciNet  MATH  Google Scholar 

  49. Konyukhov, A., Schweizerhof, K.: Contact formulation via a velocity description allowing efficiency improvements in frictionless contact analysis. Comput. Mech. 33(3), 165–173 (2004)

    Article  Google Scholar 

  50. Eberhard, P.: Kontaktuntersuchungen durch hybride Mehrkörpersystem/Finite Elemente Simulationen. Shaker Verlag, Aachen (2000)

    Google Scholar 

  51. Tang, L., Liu, J.: Frictional contact analysis of sliding joints with clearances between flexible beams and rigid holes in flexible multibody systems. Multibody Sys.Dyn. 49(2), 155–179 (2019). https://doi.org/10.1007/s11044-019-09717-w

    Article  MathSciNet  MATH  Google Scholar 

  52. Schweizerhof, K., Konyukhov, A.: Covariant description for frictional contact problems. Comput. Mech. 35(3), 190–213 (2005). https://doi.org/10.1007/s00466-004-0616-7

    Article  MATH  Google Scholar 

  53. Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, Chichester (2001)

    Google Scholar 

  54. Arnold, M., Brüls, O.: Convergence of the generalized-α scheme for constrained mechanical systems. Multibody Sys.Dyn. 18(2), 185–202 (2007). https://doi.org/10.1007/s11044-007-9084-0

    Article  MathSciNet  MATH  Google Scholar 

  55. Shi, J., Liu, Z., Hong, J.: Dynamic contact model of shell for multibody system applications. Multibody Sys.Dyn. 44(4), 335–366 (2018)

    Article  MathSciNet  Google Scholar 

  56. Morgan, J., Magleby, S.P., Howell, L.L.: An approach to designing origami-adapted aerospace mechanisms. J. Mech. Des. (2016). https://doi.org/10.1115/1.4032973

    Article  Google Scholar 

  57. Yuan, T., Liu, J.: Dynamic modelling for the deployment of the folded membrane structure with self-contact. In: The 9th ECCOMAS Thematic Conference on Multibody Dynamics, Duisburg, Germany 2019

  58. Jrusjrungkiat, A.: Nonlinear Analysis of Pneumatic Membranes: From Subgrid to Interface. Technical University of Munich (2009)

  59. Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Springer, Berlin (1984)

    MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by General Program (Nos. 11772186, 11772188) of the National Natural Science Foundation of China and the Key Program (No. 11932001) of the National Natural Science Foundation of China, for which the authors are grateful. This research was also supported by the Key Laboratory of Hydrodynamics (Ministry of Education).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyang Liu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The shape function matrix \({\mathbf{S}}_{A}\) for triangular thin plate element is given by

$$ \begin{aligned}&{\mathbf{S}}_{A} = \left[ \begin{array}{*{20}l} {S_{11} {\mathbf{I}}_{{3}} } & {S_{12} {\mathbf{I}}_{{3}} } & {S_{13} {\mathbf{I}}_{{3}} } & {S_{21} {\mathbf{I}}_{{3}} } & {S_{22} {\mathbf{I}}_{{3}} } & {S_{23} {\mathbf{I}}_{{3}} }\end{array}\right. \\ &\left.\begin{array}{*{20}l}{S_{31} {\mathbf{I}}_{{3}} } & {S_{32} {\mathbf{I}}_{{3}} } & {S_{33} {\mathbf{I}}_{{3}} } \\ \end{array} \right] \in \Re^{{{\kern 1pt} 3{\kern 1pt} {\kern 1pt} \times {\kern 1pt} {\kern 1pt} 27}} . \end{aligned}$$

The shape functions are as follows

$$ \begin{aligned} S_{11} &= \Delta_{1} - \Delta_{1} \Delta_{2} + \Delta_{3} \Delta_{1} + 2\left( {P_{1} - P_{3} } \right) \hfill \\ S_{21} &= \Delta_{2} - \Delta_{2} \Delta_{3} + \Delta_{1} \Delta_{2} + 2\left( {P_{2} - P_{1} } \right) \hfill \\ S_{31} &= \Delta_{3} - \Delta_{3} \Delta_{1} + \Delta_{2} \Delta_{3} + 2\left( {P_{3} - P_{2} } \right) \hfill \\ S_{12} &= c_{22} \left( {P_{3} - \Delta_{3} \Delta_{1} } \right) + c_{32} P_{1} \hfill \\ S_{22} &= c_{32} \left( {P_{1} - \Delta_{1} \Delta_{2} } \right) + c_{12} P_{2} \hfill \\ S_{32} &= c_{12} \left( {P_{2} - \Delta_{2} \Delta_{3} } \right) + c_{22} P_{3} \hfill \\ S_{13} &= - c_{21} \left( {P_{3} - \Delta_{3} \Delta_{1} } \right) - c_{31} P_{1} \hfill \\ S_{23} &= - c_{31} \left( {P_{1} - \Delta_{1} \Delta_{2} } \right) - c_{11} P_{2} \hfill \\ S_{33} &= - c_{11} \left( {P_{2} - \Delta_{2} \Delta_{3} } \right) - c_{21} P_{3} \hfill \\ \end{aligned} $$

where \(P_{i} = \Delta_{i}^{2} \Delta_{j} + {{\Delta_{i} \Delta_{j} \Delta_{k} \left[ {3\left( {1 - \mu_{k} } \right)\Delta_{i} + \left( {1 + 3\mu_{k} } \right)\left( {\Delta_{k} - \Delta_{j} } \right)} \right]} \mathord{\left/ {\vphantom {{\Delta_{i} \Delta_{j} \Delta_{k} \left[ {3\left( {1 - \mu_{k} } \right)\Delta_{i} + \left( {1 + 3\mu_{k} } \right)\left( {\Delta_{k} - \Delta_{j} } \right)} \right]} 2}} \right. \kern-\nulldelimiterspace} 2}\), \(\mu_{i} = {{\left( {l_{k}^{2} - l_{j}^{2} } \right)} \mathord{\left/ {\vphantom {{\left( {l_{k}^{2} - l_{j}^{2} } \right)} {l_{i}^{2} }}} \right. \kern-\nulldelimiterspace} {l_{i}^{2} }}\), \(l_{i}^{2} = c_{i1}^{2} + c_{i2}^{2}\). In addition, \(\Delta_{i} {\kern 1pt} {\kern 1pt} (i = 1,2,3)\) and \(c_{ij} {\kern 1pt} (i,j = 1,2,3)\) are triangular area coordinates and area coefficients, respectively.

Appendix 2

The shape function matrix \({\mathbf{S}}_{B}\) for rectangular thin plate element is written as

$$ \begin{aligned} &{\mathbf{S}}_{B} = \left[ {\begin{array}{*{20}l} {S_{11} {\mathbf{I}}_{{3}} } & {S_{12} {\mathbf{I}}_{{3}} } & {S_{13} {\mathbf{I}}_{{3}} } & {S_{21} {\mathbf{I}}_{{3}} } & {S_{22} {\mathbf{I}}_{{3}} } & {S_{23} {\mathbf{I}}_{{3}} } \\ \end{array} } \right. \\& \left. {\begin{array}{*{20}l} {S_{31} {\mathbf{I}}_{{3}} } & {S_{32} {\mathbf{I}}_{{3}} } & {S_{33} {\mathbf{I}}_{{3}} } & {S_{41} {\mathbf{I}}_{{3}} } & {S_{42} {\mathbf{I}}_{{3}} } & {S_{43} {\mathbf{I}}_{{3}} } \\ \end{array} } \right] \in \Re {\kern 1pt}^{{3{\kern 1pt} {\kern 1pt} \times {\kern 1pt} {\kern 1pt} 36}} \;. \hfill \\ \end{aligned} $$

The shape functions are as follows

$$ \begin{aligned} S_{11} &= - \left( {\xi - 1} \right)\left( {\eta - 1} \right)\left( {2\eta^{2} - \eta - \xi + 2\xi^{2} - 1} \right)\;, \hfill \\ S_{12} &= - a_{e} \xi \left( {\xi - 1} \right)^{2} \left( {\eta - 1} \right)\;, \hfill \\ S_{13} &= - b_{e} \eta \left( {\eta - 1} \right)^{2} \left( {\xi - 1} \right)\;, \hfill \\ S_{21} &= \xi \left( {\eta - 1} \right)\left( {2\eta^{2} - \eta - 3\xi + 2\xi^{2} } \right)\;, \hfill \\ S_{22} &= - a_{e} \xi^{2} \left( {\xi - 1} \right)\left( {\eta - 1} \right)\;, \hfill \\ S_{23} &= b_{e} \xi \eta \left( {\eta - 1} \right)^{2} \;, \hfill \\ S_{31} &= - \xi \eta \left( {1 + 2\eta^{2} - 3\eta - 3\xi + 2\xi^{2} } \right)\;, \hfill \\ S_{32} &= a_{e} \xi^{2} \eta \left( {\xi - 1} \right)\;, \hfill \\ S_{33} &= b_{e} \xi \eta^{2} \left( {\eta - 1} \right)\;, \hfill \\ S_{41} &= \eta \left( {\xi - 1} \right)\left( {2\eta^{2} - 3\eta - \xi + 2\xi^{2} } \right)\;, \hfill \\ S_{42} &= a_{e} \xi \eta \left( {\xi - 1} \right)^{2} \;, \hfill \\ S_{43} &= - b_{e} \eta^{2} \left( {\xi - 1} \right)\left( {\eta - 1} \right)\;, \hfill \\ \end{aligned} $$

where \(\xi = {x \mathord{\left/ {\vphantom {x {a_{e} }}} \right. \kern-\nulldelimiterspace} {a_{e} }},\;\eta = {y \mathord{\left/ {\vphantom {y {b_{e} }}} \right. \kern-\nulldelimiterspace} {b_{e} }}\;\;(0 \le \xi ,\eta \le 1)\). \(a_{e}\) and \(b_{e}\) are the lengths of the rectangular element in the direction of x and y, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, T., Tang, L., Liu, Z. et al. Nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction. Nonlinear Dyn 106, 1789–1822 (2021). https://doi.org/10.1007/s11071-021-06860-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06860-y

Keywords

Navigation