Skip to main content
Log in

Vibration analysis of circular cylindrical shells made of metal foams under various boundary conditions

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This study investigates the free vibration of metal foam circular cylindrical shells under various boundary conditions. The elasticity modulus and mass density of the shells vary gradually and continually in the thickness direction. Two types of porosity distribution are taken into account including symmetrical and unsymmetrical distributions. Love’s shell theory is employed to formulate the governing equations and then the Rayleigh–Ritz method is utilized to solve natural frequencies of the system. The results show that the porosity coefficient has important effect on the natural frequencies of metal foam shells. Its effect also relates to the boundary conditions of the shells. Moreover, different porosity distributions make the metal foam shells possess different vibration characteristics, which is quite obvious at large porosity coefficient. As the circumferential wave number increases, the natural frequencies of the metal foam shells tend to the same under various boundary conditions. Additionally, the present results are verified by the comparison with the published ones in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alibeigloo, A., Jafarian, H.: Three-dimensional static and free vibration analysis of carbon nano tube reinforced composite cylindrical shell using differential quadrature method. Int. J. Appl. Mech. 08(03), 1650033 (2016)

    Article  Google Scholar 

  • Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  • Arshad, S.H., Naeem, M.N., Sultana, N., Shah, A.G., Iqbal, Z.: Vibration analysis of bi-layered FGM cylindrical shells. Arch. Appl. Mech. 81(3), 319–343 (2011)

    Article  MATH  Google Scholar 

  • Avalle, M., Belingardi, G., Ibba, A.: Mechanical models of cellular solids: parameters identification from experimental tests. Int. J. Impact Eng 34(1), 3–27 (2007)

    Article  Google Scholar 

  • Banhart, J.: Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater Sci. 46(6), 559–632 (2001)

    Article  Google Scholar 

  • Barati, M.R., Zenkour, A.M.: Investigating post-buckling of geometrically imperfect metal foam nanobeams with symmetric and asymmetric porosity distributions. Compos. Struct. 182, 91–98 (2017)

    Article  Google Scholar 

  • Belica, T., Malinowski, M., Magnucki, K.: Dynamic stability of an isotropic metal foam cylindrical shell subjected to external pressure and axial compression. J. Appl. Mech. 78(4), 041003 (2011)

    Article  Google Scholar 

  • Bich, D.H., Xuan Nguyen, N.: Nonlinear vibration of functionally graded circular cylindrical shells based on improved Donnell equations. J. Sound Vib. 331(25), 5488–5501 (2012)

    Article  Google Scholar 

  • Chen, D., Yang, J., Kitipornchai, S.: Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos. Struct. 133, 54–61 (2015)

    Article  Google Scholar 

  • Chen, D., Yang, J., Kitipornchai, S.: Free and forced vibrations of shear deformable functionally graded porous beams. Int. J. Mech. Sci. 108–109, 14–22 (2016)

    Article  Google Scholar 

  • Ebrahimi, F., Habibi, S.: Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate. Steel Compos. Struct. 20(1), 205–225 (2016)

    Article  Google Scholar 

  • Jabbari, M., Mojahedin, A., Khorshidvand, A.R., Eslami, M.R.: Buckling analysis of a functionally graded thin circular plate made of saturated porous materials. J. Eng. Mech. 140(2), 287–295 (2014)

    Article  Google Scholar 

  • Ke, L.L., Wang, Y.S., Reddy, J.N.: Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions. Compos. Struct. 116, 626–636 (2014)

    Article  Google Scholar 

  • Kim, A., Hasan, M.A., Nahm, S.H., Cho, S.S.: Evaluation of compressive mechanical properties of Al-foams using electrical conductivity. Compos. Struct. 71(2), 191–198 (2005)

    Article  Google Scholar 

  • Kitipornchai, S., Chen, D., Yang, J.: Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater. Des. 116, 656–665 (2017)

    Article  Google Scholar 

  • Lam, K., Loy, C.: Effects of boundary conditions on frequencies of a multi-layered cylindrical shell. J. Sound Vib. 188(3), 363–384 (1995)

    Article  Google Scholar 

  • Loy, C.T., Lam, K.Y., Reddy, J.N.: Vibration of functionally graded cylindrical shells. Int. J. Mech. Sci. 41(3), 309–324 (1999)

    Article  MATH  Google Scholar 

  • Magnucka-Blandzi, E.: Dynamic stability of a metal foam circular plate. J. Theor. Appl. Mech. 47, 421–433 (2009)

    Google Scholar 

  • Magnucki, K., Stasiewicz, P.: Elastic buckling of a porous beam. J. Theor. Appl. Mech. 42(4), 859–868 (2004)

    MATH  Google Scholar 

  • Matsunaga, H.: Free vibration and stability of functionally graded circular cylindrical shells according to a 2D higher-order deformation theory. Compos. Struct. 88(4), 519–531 (2009)

    Article  Google Scholar 

  • Mukai, T., Kanahashi, H., Miyoshi, T., Mabuchi, M., Nieh, T., Higashi, K.: Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading. Scr. Mater. 40(8), 921–927 (1999)

    Article  Google Scholar 

  • Pellicano, F.: Vibrations of circular cylindrical shells: theory and experiments. J. Sound Vib. 303(1), 154–170 (2007)

    Article  Google Scholar 

  • Pradhan, S., Loy, C., Lam, K., Reddy, J.: Vibration characteristics of functionally graded cylindrical shells under various boundary conditions. Appl. Acoust. 61(1), 111–129 (2000)

    Article  Google Scholar 

  • Qin, Z., Chu, F., Zu, J.: Free vibrations of cylindrical shells with arbitrary boundary conditions: a comparison study. Int. J. Mech. Sci. 133, 91–99 (2017)

    Article  Google Scholar 

  • Rajendran, R., Prem Sai, K., Chandrasekar, B., Gokhale, A., Basu, S.: Preliminary investigation of aluminium foam as an energy absorber for nuclear transportation cask. Mater. Des. 29(9), 1732–1739 (2008)

    Article  Google Scholar 

  • Rezaei, A.S., Saidi, A.R.: Application of Carrera Unified Formulation to study the effect of porosity on natural frequencies of thick porous–cellular plates. Compos. B Eng. 91, 361–370 (2016)

    Article  Google Scholar 

  • Smith, B.H., Szyniszewski, S., Hajjar, J.F., Schafer, B.W., Arwade, S.R.: Steel foam for structures: a review of applications, manufacturing and material properties. J. Constr. Steel Res. 71, 1–10 (2012)

    Article  Google Scholar 

  • Soedel, W.: Vibrations of Shells and Plates. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  • Strozzi, M., Pellicano, F.: Nonlinear vibrations of functionally graded cylindrical shells. Thin-Walled Struct. 67, 63–77 (2013)

    Article  Google Scholar 

  • Tadi Beni, Y., Mehralian, F., Razavi, H.: Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory. Compos. Struct. 120, 65–78 (2015)

    Article  Google Scholar 

  • Tornabene, F., Brischetto, S., Fantuzzi, N., Viola, E.: Numerical and exact models for free vibration analysis of cylindrical and spherical shell panels. Compos. B Eng. 81, 231–250 (2015)

    Article  Google Scholar 

  • Wang, Y.Q.: Nonlinear vibration of a rotating laminated composite circular cylindrical shell: traveling wave vibration. Nonlinear Dyn. 77(4), 1693–1707 (2014)

    Article  MathSciNet  Google Scholar 

  • Wang, Y.Q., Zhao, H.L., Ye, C., Zu, J.W.: A porous microbeam model for bending and vibration analysis based on the sinusoidal beam theory and modified strain gradient theory. Int. J. Appl. Mech. 10(5), 1850059 (2018)

    Article  Google Scholar 

  • Zenkour, A.M.: Bending analysis of piezoelectric exponentially graded fiber-reinforced composite cylinders in hygrothermal environments. Int. J. Mech. Mater. Des. 13(4), 515–529 (2017)

    Article  MathSciNet  Google Scholar 

  • Zhang, W., Liu, T., Xi, A., Wang, Y.N.: Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes. J. Sound Vib. 423, 65–99 (2018a)

    Article  Google Scholar 

  • Zhang, W., Yang, S.W., Mao, J.J.: Nonlinear radial breathing vibrations of CFRP laminated cylindrical shell with non-normal boundary conditions subjected to axial pressure and radial line load at two ends. Compos. Struct. 190, 52–78 (2018b)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 11672071) and the Fundamental Research Funds for the Central Universities (Grant No. N170504023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Qing Wang.

Appendix

Appendix

The coefficients Cij (i, j = 1, 2, 3) in Eq. (28) are defined as follows:

$$\begin{aligned} C_{11} & = \frac{{A_{11} m^{2} \pi^{3} R}}{2L} + \frac{{A_{66} \pi n^{2} L}}{2R} - \frac{\pi RL}{2}\rho_{m} \omega^{2} , \\ C_{12} & = - \frac{{mn\pi^{2} }}{2}\left( {A_{12} + A_{66} + \frac{{B_{12} }}{R} + \frac{{2B_{66} }}{R}} \right), \\ C_{13} & = - \frac{{m\pi^{2} }}{2}\left( {A_{12} + \frac{{B_{12} n^{2} }}{R} + \frac{{2B_{66} n^{2} }}{R} + \frac{{B_{11} m^{2} \pi^{2} R}}{{L^{2} }}} \right), \\ C_{22} & = \frac{{m^{2} \pi^{3} }}{L}\left( {\frac{{A_{66} R}}{2} + 2B_{66} + \frac{{2D_{66} }}{R}} \right) + \frac{{n^{2} L\pi }}{R}\left( {\frac{{A_{22} }}{2} + \frac{{B_{22} }}{R} + \frac{{D_{22} }}{{2R^{2} }}} \right) - \frac{\pi RL}{2}\rho_{m} \omega^{2} , \\ C_{23} & = \frac{{m^{2} n\pi^{3} }}{L}\left( {\frac{{B_{12} }}{2} + B_{66} + \frac{{D_{12} }}{2R} + \frac{{D_{66} }}{R}} \right) + \frac{n\pi L}{2R}\left( {A_{22} + \frac{{B_{22} }}{R}} \right) + \frac{{n^{3} \pi L}}{{2R^{2} }}\left( {B_{22} + \frac{{D_{22} }}{R}} \right), \\ C_{33} & = \frac{{m^{2} n^{2} \pi^{3} }}{LR}\left( {D_{12} + 2D_{66} } \right) + \frac{{n^{2} \pi L}}{{R^{2} }}\left( {B_{22} + \frac{{D_{22} n^{2} }}{2R}} \right) + \frac{{m^{2} \pi^{3} }}{L}\left( {B_{12} + \frac{{D_{11} m^{2} \pi^{2} R}}{{2L^{2} }}} \right) + \frac{{A_{22} \pi L}}{2R} - \frac{\pi RL}{2}\rho_{m} \omega^{2} . \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y.Q., Ye, C. & Zu, J.W. Vibration analysis of circular cylindrical shells made of metal foams under various boundary conditions. Int J Mech Mater Des 15, 333–344 (2019). https://doi.org/10.1007/s10999-018-9415-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-018-9415-8

Keywords

Navigation