Skip to main content
Log in

Fractional-order \(PI^{\lambda }D\) sliding mode control for hypersonic vehicles with neural network disturbance compensator

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a novel fractional-order \(PI^{\lambda }D\) sliding mode controller for a nth-order nonlinear system with compound disturbance. The novel method contains a fractional-order term in the sliding mode surface compared with the traditional sliding mode controller. The nth-order nonlinear system with disturbance is firstly investigated. Then the effects of the fractional-order \(PI^{\lambda }D\) sliding mode controller with different fractional-orders are studied and the effect is compared with PID controller. Finally, the fractional-order sliding mode controller is designed for hypersonic vehicles. Moreover, in order to combine the advantage of fractional-order sliding mode control with neural network, a fractional-order sliding mode controller with neural network observer is proposed for hypersonic vehicles in this study. The neural network observer is introduced to approximate the compound disturbance and relax the requirement of the switching gain. Based on Lyapunov stability theory, the attitude-tracking errors are shown to be asymptotically stable. The simulation results show that the proposed control scheme achieves satisfactory control performance compared with PID controller and is robust against compound disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Yang, N., Liu, C.: A novel fractional-order hyperchaotic system stabilization via fractional sliding-mode control. Nonlinear Dynam. 74(3), 721–732 (2013)

    Article  MathSciNet  Google Scholar 

  2. Muñoz-Vázquez, A.J., Parra-Vega, V., Sánchez-Orta, A.: Fractional integral sliding modes for robust tracking of nonlinear systems. Nonlinear Dynam. 87(2), 895–901 (2017)

    Article  MathSciNet  Google Scholar 

  3. An, H., Wu, Q., Xia, H., Wang, C.: Fast tracking control of air-breathing hypersonic vehicles with time-varying uncertain parameters. Nonlinear Dynam. 91(3), 1835–1852 (2018)

    Article  Google Scholar 

  4. Parker, J.T., Serrani, A., Yurkovich, S., Bolender, M.A., Doman, D.B.: Control-oriented modeling of an air-breathing hypersonic vehicle. J. Guid. Control Dynam. 30(3), 856–869 (2007)

    Article  Google Scholar 

  5. Wang, J., Wu, Y., Dong, X.: Recursive terminal sliding mode control for hypersonic flight vehicle with sliding mode disturbance observer. Nonlinear Dynam. 81(3), 1489–1510 (2015)

    Article  Google Scholar 

  6. Guo, Z., Zhou, J., Guo, J., Cieslak, J., Chang, J.: Coupling-characterization-based Robust attitude control scheme for hypersonic vehicles. IEEE Trans. Ind. Electron. 64(8), 6350–6361 (2017)

    Article  Google Scholar 

  7. Wang, P., Tang, G., Wu, J.: Sliding mode decoupling control of a generic hypersonic vehicle based on parametric commands. Sci. China Inf. Sci. 58(5), 1–14 (2015)

    Google Scholar 

  8. Xu, B., Gao, D., Wang, S.: Adaptive neural control based on HGO for hypersonic flight vehicles. Sci. China Inf. Sci. 54(3), 511–520 (2011)

    Article  MathSciNet  Google Scholar 

  9. Bu, X., Wu, X., Ma, Z., Zhang, R.: State-reconstructionbased robust backstepping control of air-breathing hypersonic vehicles. J. Solid Rocket Technol. 38(3), 314–319 (2015)

    Google Scholar 

  10. Aghababa, M.P.: A novel terminal sliding mode controller for a class of non-autonomous fractional-order systems. Nonlinear Dynam. 73(1–2), 679–688 (2013)

    Article  MathSciNet  Google Scholar 

  11. Wang, J., Wu, Y., Liu, X.: Sliding mode controller design based on reaching law for hypersonic flight vehicle. Int. J. Model. Simul. Sci. Comput. 5(04), 1450014 (2014)

    Article  Google Scholar 

  12. Wang, L., Liu, X., Cong, B., Chen, Z.: Adaptive exponential time-varying sliding mode control for hypersonic cruise vehicles. In Control Conference (CCC), 2012 31st Chinese (pp. 3160-3165). IEEE(2012,July)

  13. Zhang, R., Wang, L., Zhou, Y.: On-line RNN compensated second order nonsingular terminal sliding mode control for hypersonic vehicle. Int. J. Intell. Comput. Cybern. 5(2), 186–205 (2012)

    Article  MathSciNet  Google Scholar 

  14. Wang, J., Zong, Q., Su, R., Tian, B.: Continuous high order sliding mode controller design for a flexible air-breathing hypersonic vehicle. ISA Trans. 53(3), 690–698 (2014)

    Article  Google Scholar 

  15. Zhao, Y., Sheng, Y., Liu, X.: Impact angle constrained guidance for allaspect interception with function-based finite-time sliding mode control. Nonlinear Dynam. 85(3), 1791–1804 (2016)

    Article  Google Scholar 

  16. Ren, J., Zhao, X., Xu, B.: Adaptive discrete-time control with dual neural networks for HFV via back-stepping. In Control Conference (ASCC), 2013 9th Asian (pp. 1-6). IEEE(2013, June)

  17. Chao, S., Guo-Rong, Z., Zhi-Qiang, L.I., Yuan, Z.: Nonlinear control law for hypersonic vehicle with nonlinear disturbance observer. Flight Dynam 30(6), 546–550 (2012)

    Google Scholar 

  18. Wang, F., Zong, Q., Dong, Q., Tian, B.: Disturbance observer-based sliding mode backstepping control for a re-entry vehicle with input constraint and external disturbance. Trans. Inst. Measure. Control 38(2), 165–181 (2016)

    Article  Google Scholar 

  19. Zhou, Y., Wu, Y., Hu, Y.: Robust Backstepping Sliding Mode Control of a Class of Uncertain MIMO Nonlinear Systems. In: IEEE International Conference on Control and Automation, IEEE (2007)

  20. Wang, J.M., DONGXiao, meng, Yun-Jie, W.U.: Hypersonic flight vehicle of sliding mode variable structure control based on RBF neural network. Electric Mach. Control 20(5), 103–110 (2016)

    Google Scholar 

  21. Zhao, H.W., Yang, X.X., Shen, R.S., Hu, Y.A.: Prescribed performance fine attitude control for aeroelastic hypersonic vehicle. Acta Armamentarii 38(3), 501–511 (2017)

    Google Scholar 

  22. Podlubny, L.: Fractional-order systems and \(PI^\lambda D\mu \) controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MathSciNet  Google Scholar 

  23. Song, J., Wang, L., Cai, G., Qi, X.: Nonlinear fractional order proportion-integral-derivative active disturbance rejection control method design for hypersonic vehicle attitude control. Acta Astronaut. 111, 160–169 (2015)

    Article  Google Scholar 

  24. Yang, Y., Zhou, K., Wang, H., Blaabjerg, F., Wang, D., Zhang, B.: Frequency adaptive selective harmonic control for grid-connected inverters. IEEE Trans. Power Electron. 30(7), 3912–3924 (2015)

    Article  Google Scholar 

  25. Manabe, S.: A suggestion of fractional-order controller for flexible spacecraft attitude control. Nonlinear Dynam. 29(1–4), 251–268 (2002)

    Article  Google Scholar 

  26. Chen, Y., Vinagre, B.M., Podlubny, I.: Fractional order disturbance observer for robust vibration suppression. Nonlinear Dynam. 38(1–4), 355–367 (2004)

    Article  Google Scholar 

  27. Fei, J., Lu, C.: Adaptive fractional order sliding mode controller with neural estimator. J. Franklin Inst. 355(5), 2369–2391 (2018)

    Article  MathSciNet  Google Scholar 

  28. Changmao, Q., Naiming, Q., Zhiguo, S. Fractional PID controller design of hypersonic flight vehicle. In: 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering (Vol. 3, pp. 466-469). IEEE(2010, August)

  29. Muñoz-Vázquez, A.J., Sánchez-Orta, A., Parra-Vega, V.: A novel PID control with fractional nonlinear integral. Nonlinear Dynam. 94(4), 3041–3052 (2018)

    Article  Google Scholar 

  30. Chen, Y., Wei, Y., Zhong, H., Wang, Y.: Sliding mode control with a second-order switching law for a class of nonlinear fractional order systems. Nonlinear Dynam. 85(1), 633–643 (2016)

    Article  MathSciNet  Google Scholar 

  31. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fraction. Calculus Appl. Anal. 5(4), 230–237 (2001)

    MathSciNet  Google Scholar 

  32. Buschek, H., Calise, A.J.: Uncertainty modeling and fixed-order controller design for a hypersonic vehicle model. J. Guid. Control Dynam. 20(1), 42–48 (1997)

    Article  Google Scholar 

  33. Keshmiri, S., Mirmirani, M., Colgren, R.: Six-DOF modeling and simulation of a generic hypersonic vehicle for conceptual design studies. In: AIAA modeling and simulation technologies conference and exhibit (p. 4805)(2004)

  34. Keshmiri, S., Colgren, R., Mirmirani, M.: Development of an aerodynamic database for a generic hypersonic air vehicle. In: AIAA Guidance, Navigation, and Control Conference and Exhibit (p. 6257)(2005, August)

  35. Wen, Tongge, Zeng, Xiangyuan, Circi, Christian, Gao, Yang: Hop reachable domain on irregularly shaped asteroids. J. Guid. Control Dynam. 43(7), 1269–1283 (2020)

    Article  Google Scholar 

  36. Guo, X., Qi, R., Yao, X.: Predictor-corrector guidance for reentry hypersonic vehicle based on feedback linearization. In; Control And Decision Conference (CCDC), 2017 29th Chinese (pp. 6516-6521). IEEE(2017, May)

  37. Zhang, J., Sun, C., Zhang, R., Qian, C.: Adaptive sliding mode control for re-entry attitude of near space hypersonic vehicle based on backstepping design. IEEE/CAA J. Autom. Sinica 2(1), 94–101 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhi Sheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 2241 KB)

Supplementary material 2 (pdf 1470 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, Y., Bai, W. & Xie, Y. Fractional-order \(PI^{\lambda }D\) sliding mode control for hypersonic vehicles with neural network disturbance compensator. Nonlinear Dyn 103, 849–863 (2021). https://doi.org/10.1007/s11071-020-06046-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06046-y

Keywords

Navigation