Skip to main content
Log in

Recursive terminal sliding mode control for hypersonic flight vehicle with sliding mode disturbance observer

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A recursive terminal sliding mode controller (RTSMC) based on sliding mode disturbance observer (SMDOB) is proposed for the longitudinal dynamics of a generic hypersonic flight vehicles (HFVs) in the presence of parametric uncertainties, measurement noises and external disturbances. First, a sliding mode tracking controller is presented by introducing recursive terminal sliding mode manifolds, in which each manifold will reach zero subsequently in finite time as well as the usual singularity problem will not occur. The RTSMC embraces advantages of both nonsingular terminal sliding mode control and high-order sliding mode control. Next, for the sake of enhancing the robustness of controller for uncertainties, a SMDOB is proposed to estimate and compensate the disturbances. Then, a composite controller that is composed of RTSMC and SMDOB is designed, and its stability is analyzed utilizing Lyapunov function method. Finally, numerical simulation is conducted for cruise flight condition of HFV. Simulation results show the expected control performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chavez, F.R., Schmidt, D.K.: Analytical aeropropulsive/aeroelastic hypersonic vehicle model with dynamic analysis. J. Guid. Control Dyn. 17(6), 1308–1319 (1994)

    Article  Google Scholar 

  2. Bolender, M.A., Doman, D.B.: A non-linear model for the longitudinal dynamics of a hypersonic air-breathing vehicle. Defense Technical Information Center (2006)

  3. Bolender, M.A., Doman, D.B.: Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle. J Spacecr. Rockets 44(2), 374–387 (2007)

    Article  Google Scholar 

  4. Marrison, C.I., Stengel, R.F.: Design of robust control systems for hypersonic aircraft. J. Guid. Control Dyn. 21(1), 58–63 (1998)

    Article  Google Scholar 

  5. Wang, Q., Stengel, R.F.: Robust nonlinear control of a hypersonic aircraft. J. Guid. Control Dyn. 23(4), 577–585 (2000)

    Article  Google Scholar 

  6. Groves, K.P., Sigthorsson, D.O., Serrani, A., Yurkovich, S.: Reference command tracking for a linearized model of an air-breathing hypersonic vehicle. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, CA (2005)

  7. Parker, J.T., Bolender, M.A., Doman, D.B.: Control-oriented modeling of an air-breathing hypersonic vehicle. J. Guid. Control Dyn. 30(3), 856–869 (2007)

    Article  Google Scholar 

  8. Xu, H., Mirmirani, M.D., Ioannou, P.A.: Adaptive sliding mode control design for a hypersonic flight vehicle. J. Guid. Control Dyn 27(5), 829–838 (2004)

    Article  Google Scholar 

  9. Rehman, O.U., Fidan, B., Petersen, I.R.: Uncertainty modeling and robust minimax LQR control of multivariable nonlinear systems with application to hypersonic flight. Asian J. Control 14(5), 1180–1193 (2012)

    Article  MathSciNet  Google Scholar 

  10. Rehman, O.U., Petersen, I.R., Fidan, B.: Robust nonlinear control design of a hypersonic flight vehicle using minimax linear quadratic Gaussian control. In: 49th IEEE Conference on Decision and Control, Atlanta, GA, USA, pp 6219–6224 (2010)

  11. Rehman, O.U., Petersen, I.R., Fidan, B.: Feedback linearization-based robust nonlinear control design for hypersonic flight vehicles. Proc. IMechE Part I: J Syst. Control Eng. 227(1), 3–11 (2012)

    Google Scholar 

  12. Hu, X., Karimi, H.R., Zhang, Z., Gao, H.: Non-fragile sliding mode control for flexible air-breathing hypersonic vehicles. In: 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, pp. 906–911 (2012)

  13. Durmaz, B., Özgören, M.K., Salamci, M.U.: Sliding mode control for non-linear systems with adaptive sliding surfaces. Trans. Inst. Meas. Control 34(1), 56–90 (2012)

    Article  Google Scholar 

  14. Hu, X., Wu, L., Hu, C., Gao, H.: Adaptive sliding mode tracking control for a flexible air-breathing hypersonic vehicle. J. Franklin Inst. 349, 559–577 (2012)

    Article  MathSciNet  Google Scholar 

  15. Yu, X., Zhihong, M.: Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49(2), 261–264 (2002)

    Article  MathSciNet  Google Scholar 

  16. Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41, 1957–1964 (2005)

    Article  MathSciNet  Google Scholar 

  17. Feng, Y., Yu, X., Man, Z.: Non-singular terminal sliding mode control of rigid manipulators. Automatica 38, 2159–2167 (2002)

  18. Li, H., Dou, L., Zhong, S.: Adaptive nonsingular fast terminal sliding mode control for electromechanical actuator. Int. J. Syst. Sci. 44(3), 401–415 (2013)

    Article  Google Scholar 

  19. Zhang, R., Sun, C., Zhang, J., Zhou, Y.: Second-order terminal sliding mode control for hypersonic vehicle in cruising flight with sliding mode disturbance observer. J. Control Theory Appl. 11(2), 299–305 (2013)

    Article  Google Scholar 

  20. Zong, Q., Wang, J., Tian, B., Tao, Y.: Quasi-continuous high-order sliding mode controller and observer design for flexible hypersonic vehicle. Aerosp. Sci. Technol. 27, 127–137 (2013)

    Article  Google Scholar 

  21. Sun, H., Li, S., Sun, C.: Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn. 73, 229–244 (2013)

    Article  Google Scholar 

  22. Wilcox, Z.D., MacKunis, W., Bhat, S., Lind, R., Dixon, W.E.: Lyapunov-based exponential tracking control of a hypersonic aircraft with aerothermoelastic effects. J. Guid. Control Dyn. 33(4), 1213–1224 (2010)

    Article  Google Scholar 

  23. Slotine, J.-J.E., Li, W.: Applied Nonlined Control. Pearson Education Inc, New York (1991)

    Google Scholar 

  24. Hu, S.: Automatic Control Theory. Science Press, Beijing (2000). (in Chinese)

    Google Scholar 

  25. Polyakov, A., Poznyak, A.: Reaching time estimation for “Super-Twisting” second order sliding mode controller via Lyapunov function designing. IEEE Trans. Autom. Control 54(8), 1951–1955 (2009)

  26. Chiu, C.-S.: Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems. Automatica 48, 316–326 (2012)

  27. Hall, C.E., Shtessel, Y.B.: Sliding mode disturbance observer-based control for a reusable launch vehicle. J. Guid. Control Dyn. 29(6), 1315–1328 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (91216304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Wang.

Appendices

Appendix 1

The detailed expressions of the vectors \({\varvec{\Omega }}_{1}, \varvec{\Pi }_{1}\) and matrices \({\varvec{\Omega }}_{2}, \varvec{\Pi }_{2}\) are as follows:

$$\begin{aligned}&{\varvec{\Omega }}_1 =\left[ {{\begin{array}{c} {\left( {\frac{\partial T}{\partial V}} \right) \cos \alpha -\frac{\partial D}{\partial V}} \\ {-\frac{m\mu \cos \gamma }{r^{2}}} \\ {-T\sin \alpha -\left( {\frac{\partial D}{\partial \alpha }} \right) } \\ {\left( {\frac{\partial T}{\partial \beta }} \right) \cos \alpha } \\ {\frac{2m\mu \sin \gamma }{r^{3}}} \\ \end{array} }} \right] ^\mathrm{T}\\&{\varvec{\Omega }}_2 =\left[ {{\begin{array}{ccccc} {\varvec{\omega }_{21} }&{} {\varvec{\omega }_{22} }&{} {\varvec{\omega }_{23} }&{} {\varvec{\omega }_{24} }&{} {\varvec{\omega }_{25} } \\ \end{array} }} \right] \end{aligned}$$

where

$$\begin{aligned}&\varvec{\omega }_{21} =\left[ {{\begin{array}{c} {\left( {\frac{\partial ^{2}T}{\partial V^{2}}} \right) \cos \alpha -\frac{\partial ^{2}D}{\partial V^{2}}} \\ 0 \\ {-\left( {\frac{\partial T}{\partial V}} \right) \sin \alpha -\frac{\partial ^{2}D}{\partial V\partial \alpha }} \\ {\left( {\frac{\partial ^{2}T}{\partial V\partial \beta }} \right) \cos \alpha } \\ 0 \\ \end{array} }} \right] , \varvec{\omega }_{22} =\left[ {{\begin{array}{c} 0 \\ {\frac{m\mu \sin \gamma }{r^{2}}} \\ 0 \\ 0 \\ {\frac{2m\mu \cos \gamma }{r^{3}}} \\ \end{array} }} \right] ,\\&\varvec{\omega }_{23} =\left[ {{\begin{array}{c} {-\left( {\frac{\partial T}{\partial V}} \right) \sin \alpha -\left( {\frac{\partial ^{2}D}{\partial V\partial \alpha }} \right) } \\ 0 \\ {-T\cos \alpha -\left( {\frac{\partial ^{2}D}{\partial \alpha ^{2}}} \right) } \\ {-\left( {\frac{\partial T}{\partial \beta }} \right) \sin \alpha } \\ 0 \\ \end{array} }} \right] \\&\varvec{\omega }_{24} =\left[ {{\begin{array}{c} {\frac{\partial ^{2}T}{\partial V\partial \beta }\cos \alpha } \\ 0 \\ {-\left( {\frac{\partial T}{\partial \beta }} \right) \sin \alpha } \\ 0 \\ 0 \\ \end{array} }} \right] , \varvec{\omega }_{25} =\left[ {{\begin{array}{c} 0 \\ {\frac{2m\mu \cos \gamma }{r^{3}}} \\ 0 \\ 0 \\ {-\frac{6m\mu \sin \gamma }{r^{4}}} \\ \end{array} }} \right] \\&\varvec{\Pi }_1 =\left[ {{\begin{array}{c} {\frac{{\partial L}/{\partial V+\left( {{\partial T}/{\partial V}} \right) \sin \alpha }}{mV}-\frac{L+T\sin \alpha }{mV^{2}}+\frac{\mu \cos \gamma }{V^{2}r^{2}}+\frac{\cos \gamma }{r}} \\ {\frac{\mu \sin \gamma }{Vr^{2}}-\frac{V\sin \gamma }{r}} \\ {\frac{{\partial L}/{\partial \alpha +T\cos \alpha }}{mV}} \\ {\frac{\left( {{\partial T}/{\partial \beta }} \right) \sin \alpha }{mV}} \\ {\frac{2\mu \cos \gamma }{Vr^{3}}-\frac{V\cos \gamma }{r^{2}}} \\ \end{array} }} \right] ^\mathrm{T}\\&\varvec{\Pi }_2 =\left[ {{\begin{array}{ccccc} {\varvec{\pi }_{21} }&{} {\varvec{\pi }_{22} }&{} {\varvec{\pi }_{23} }&{} {\varvec{\pi }_{24} }&{} {\varvec{\pi }_{25} } \\ \end{array} }} \right] \end{aligned}$$
$$\begin{aligned}&\varvec{\pi }_{21} =\left[ {{\begin{array}{c} {\frac{{\partial ^{2}L}/{\partial V^{2}+\left( {{\partial ^{2}T}/{\partial V^{2}}} \right) \sin \alpha }}{mV}-\frac{2\left[ {{\partial L}/{\partial V+\left( {{\partial T}/{\partial V}} \right) \sin \alpha }} \right] }{mV^{2}}} \\ +\frac{2\left( {L+T\sin \alpha } \right) }{mV^{3}}-\frac{2\mu \cos \gamma }{V^{3}r^{2}}{-\frac{\mu \sin \gamma }{V^{2}r^{2}}-\frac{\sin \gamma }{r}} \\ {\frac{\left( {{\partial ^{2}L}/{\partial \alpha \partial V}} \right) +\left( {{\partial T}/{\partial V}} \right) \cos \alpha }{mV}-\frac{{\partial L}/{\partial \alpha +T\cos \alpha }}{mV^{2}}} \\ {\frac{\left( {{\partial ^{2}T}/{\partial \beta \partial V}} \right) \sin \alpha }{mV}-\frac{\left( {{\partial T}/{\partial \beta }} \right) \sin \alpha }{mV^{2}}} \\ {-\frac{2\mu \cos \gamma }{V^{2}r^{3}}-\frac{\cos \gamma }{r^{2}}} \\ \end{array} }} \right] \\&\varvec{\pi }_{22} =\left[ {{\begin{array}{c} {-\frac{\mu \sin \gamma }{V^{2}r^{2}}-\frac{\sin \gamma }{r}} \\ {\frac{\mu \cos \gamma }{Vr^{2}}-\frac{V\cos \gamma }{r}} \\ 0 \\ 0 \\ {-\frac{2\mu \sin \gamma }{Vr^{3}}+\frac{V\sin \gamma }{r^{2}}} \\ \end{array} }} \right] ,\\&\varvec{\pi }_{23} =\left[ {{\begin{array}{c} {\frac{\left( {{\partial ^{2}L}/{\partial V\partial \alpha }} \right) +\left( {{\partial T}/{\partial V}} \right) \cos \alpha }{mV}-\frac{{\partial L}/{\partial \alpha +T\cos \alpha }}{mV^{2}}} \\ 0 \\ {\frac{{\partial ^{2}L}/{\partial \alpha ^{2}-T\sin \alpha }}{mV}} \\ {\frac{\left( {{\partial T}/{\partial \beta }} \right) \cos \alpha }{mV}} \\ 0 \\ \end{array} }} \right] \\&\varvec{\pi }_{24} =\left[ {{\begin{array}{c} {\frac{\left( {{\partial ^{2}T}/{\partial V\partial \beta }} \right) \sin \alpha }{mV}-\frac{\left( {{\partial T}/{\partial \beta }} \right) \sin \alpha }{mV^{2}}} \\ 0 \\ {\frac{\left( {{\partial T}/{\partial \beta }} \right) \cos \alpha }{mV}} \\ 0 \\ 0 \\ \end{array} }} \right] ,\\&\varvec{\pi }_{25} =\left[ {{\begin{array}{c} {-\frac{2\mu \cos \gamma }{V^{2}r^{3}}-\frac{\cos \gamma }{r^{2}}} \\ {-\frac{2\mu \sin \gamma }{Vr^{3}}+\frac{V\sin \gamma }{r^{2}}} \\ 0 \\ 0 \\ {-\frac{6\mu \cos \gamma }{Vr^{4}}+\frac{2V\cos \gamma }{r^{3}}} \\ \end{array} }} \right] \end{aligned}$$

Appendix 2

Without loss of generality, the angle of attack and flight path angle are assumed near this singularity to be

$$\begin{aligned} \alpha =\varepsilon ,\gamma =\frac{\pi }{2} \end{aligned}$$
(72)

where \(\varepsilon \) is a small positive number.

Then,

$$\begin{aligned} b_{11}= & {} \left( {\frac{\rho V^{2}Sc_\beta \omega _n^2 }{2m}} \right) \cos \alpha =\left( {\frac{\rho V^{2}Sc_\beta \omega _n^2 }{2m}} \right) \cos \varepsilon \nonumber \\\approx & {} \frac{\rho V^{2}Sc_\beta \omega _n^2 }{2m} \end{aligned}$$
(73)
$$\begin{aligned} b_{12}= & {} -\left( {\frac{c_e \rho V^{2}S\bar{{c}}}{2mI_{yy} }} \right) \left( {T\sin \alpha +D_\alpha } \right) \nonumber \\\approx & {} -\left( {\frac{c_e \rho V^{2}S\bar{{c}}}{2mI_{yy} }} \right) \left( {T\varepsilon +\sigma } \right) \end{aligned}$$
(74)

where \(\sigma =\frac{\partial \left( {\frac{1}{2}\rho V^{2}SC_D } \right) }{\partial \alpha }\) and which is a small real number.

$$\begin{aligned} b_{21}= & {} \left( {\frac{\rho V^{2}Sc_\beta \omega _n^2 }{2m}} \right) \sin (\alpha +\gamma )\nonumber \\= & {} \left( {\frac{\rho V^{2}Sc_\beta \omega _n^2 }{2m}} \right) \sin (\varepsilon \,+\,\frac{\pi }{2})\approx \frac{\rho V^{2}Sc_\beta \omega _n^2 }{2m} \end{aligned}$$
(75)
$$\begin{aligned} b_{22}= & {} \left( {\frac{c_e \rho V^{2}S\bar{{c}}}{2mI_{yy} }} \right) \left[ T\cos (\alpha +\gamma )\right. \nonumber \\&\left. +\,L_\alpha \cos \gamma -D_\alpha \sin \gamma \right] \nonumber \\\approx & {} \left( {\frac{c_e \rho V^{2}S\bar{{c}}}{2mI_{yy} }} \right) \left( {0+0-\sigma } \right) \nonumber \\= & {} -\sigma \left( {\frac{c_e \rho V^{2}S\bar{{c}}}{2mI_{yy} }} \right) \end{aligned}$$
(76)

In the above case, \(b_{11}\) is equal to \(b_{21}\), and the matrix \(\mathbf{B}\) will be singular if \(b_{12} =b_{22} =0\). Therefore, we give \(b_{12}\) and \(b_{22}\) some restrictions near the singularity, namely

$$\begin{aligned} b_{12} =\left\{ {{\begin{array}{l} {\delta _1^*,\left| {b_{12} } \right| \le \delta _1^*} \\ {b_{12} ,\left| {b_{12} } \right| >\delta _1^*} \\ \end{array} }} \right. \end{aligned}$$
(77)
$$\begin{aligned} b_{22} =\left\{ {{\begin{array}{l} {\delta _2^*,\left| {b_{22} } \right| \le \delta _2^*} \\ {b_{22} ,\left| {b_{22} } \right| >\delta _2^*} \\ \end{array} }} \right. \end{aligned}$$
(78)

moreover, \(\delta _1^*\ne \delta _2^*, b_{12} \ne b_{22}\).

In that way, the matrix

$$\begin{aligned} \mathbf{B}=\left[ {{\begin{array}{ll} {b_{11} }&{}\quad {b_{12} } \\ {b_{21} }&{}\quad {b_{22} } \\ \end{array} }} \right] \ne \mathbf{0} \end{aligned}$$
(79)

And the controller in the paper can be used.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wu, Y. & Dong, X. Recursive terminal sliding mode control for hypersonic flight vehicle with sliding mode disturbance observer. Nonlinear Dyn 81, 1489–1510 (2015). https://doi.org/10.1007/s11071-015-2083-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2083-4

Keywords

Navigation