Skip to main content
Log in

Stability and bifurcations in oscillations of composite laminates with curvilinear fibres under a supersonic airflow

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear flutter of variable stiffness composite plates—using a reduced-order model benefiting from a large-enough number of modes or degrees of freedom—is the subject of this research. Dynamic of such plates is enriched by different scenarios including period-n (un)stable limit cycle oscillations, quasi-periodic or chaotic solutions, along with Hopf, symmetry breaking and period doubling bifurcations. The fibre path orientation, in any individual ply of these rectangular plates, changes linearly from the left edge to the right one. The plates are subjected to a supersonic airflow. The plate’s displacement field is modelled using a third-order shear deformation theory; a p-version finite element is used to discretize the displacement components. Aerodynamic pressure due to the airflow is approximated using linear piston theory. The self-exciting vibrational full-order model (FOM) is formed by employing the principle of virtual work, and then, the ROM is extracted from the FOM using two reduction techniques, namely static condensation and modal summation method. The inclusion of a large-enough number of modes of vibration in vacuum in the latter technique is critical for the observation of, often overlooked, complex dynamic behaviour of these plates. The equations of motion representing the ROM are solved using the shooting method (to obtain stable and unstable LCOs) and using Newmark method (for stable or non-oscillatory solutions). The rich dynamics of these plates are explored with the help of vibration and flutter mode shapes, phase-plane plots, bifurcation diagrams, fast Fourier transform diagrams and Poincaré sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

ab :

Length and width of the plate, respectively (m)

c :

\(4/3h^2\) (\(\hbox {m}^{-2}\))

D :

\(\frac{E_1 h^3}{12\left( 1-\nu ^2\right) }\) flexural rigidity of the plate (N m)

\(E_1,E_2\) :

Major and minor Young’s moduli, respectively, in material coordinates 1 and 2 (GPa)

\(G_{12},G_{13},G_{23}\) :

Shear moduli, in material coordinates 1, 2 and 3 (GPa)

h :

Thickness of the plate (m)

M :

Mach number

\({{\mathbf {N}} ^{\mathbf {i}}\left( x,y\right) }\) :

Shape function vectors (\({\mathbf {i}}= {\mathbf {u}}\), \({\mathbf {v}}\), \({\mathbf {w}}\), \({\phi }_{\mathbf {x}}\) and \({\phi }_{\mathbf {y}}\))

p :

Aerodynamic pressure (Pa)

q :

\(\frac{\rho _\infty U^2_\infty }{2}\) dynamic pressure (Pa)

\({\mathbf {q}}_{\mathbf {i}}\left( t\right) \) :

Generalized displacement vectors (\({\mathbf {i}}= {\mathbf {u}}\), \({\mathbf {v}}\), \({\mathbf {w}}\), \({\phi }_{\mathbf {x}}\) and \({\phi }_{\mathbf {y}}\))

t :

Time (s)

\(T_0,T_1\) :

Characteristic angles of the fibre path (\(^{\circ }\))

\(T,{\overline{T}}\) :

Period and its initial guess (s)

\(U_\infty \) :

Free-stream velocity (m/s)

uvw :

Displacement components in xyz directions (m)

\(u^0, v^0, w^0\) :

Displacement components at the mid-plane (m)

W :

LCO amplitude (m)

xyz :

Cartesian coordinate system

\(\beta \) :

\(\sqrt{M^2-1}\)

\(\lambda \) :

\(\frac{2qa^3}{\beta D}\) non-dimensional dynamic pressure

\(\mu \) :

\(\frac{a \rho _\infty }{h \rho }\)

\(\nu \) :

Poisson’s ratio

\(\phi {}_x, \phi {}_y\) :

Independent rotations of normal to the middle surface about y and x axes

\(\rho _\infty \) :

Ambient density of air (kg/\(\hbox {m}^3\))

\(\rho \) :

Density of the plate (kg/\(\hbox {m}^3\))

\(\theta \left( x\right) \) :

Angle of the reference fibre path with respect to x axis

\(\varOmega \) :

Surface of the plate

T :

Transpose of matrix or vector

References

  1. Dirk, H.J.L., Ward, C., Potter, K.D.: The engineering aspects of automated prepreg layup: history, present and future. Compos. B Eng. 43(3), 997 (2012)

    Article  Google Scholar 

  2. Akhavan, H.: Non-linear vibrations of tow placed variable stiffness composite laminates. Ph.D. thesis, University of Porto (2015)

  3. Hyer, M.W., Lee, H.: The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes. Compos. Struct. 18(3), 239 (1991)

    Article  Google Scholar 

  4. IJsselmuiden, S. T.: Optimal design of variable stiffness composite structures using lamination parameters. Ph.D. thesis, Technische Universiteit Delft (2011)

  5. Ribeiro, P., Akhavan, H., Teter, A., Warmiński, J.: A review on the mechanical behaviour of curvilinear fibre composite laminated panels. J. Compos. Mater. 48(22), 2761 (2014)

    Article  Google Scholar 

  6. Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos. Wiley, Hoboken (2002)

    MATH  Google Scholar 

  7. Akhavan, H., Ribeiro, P.: Reduced-order models for nonlinear flutter of composite laminates with curvilinear fibers. AIAA J. 57(7), 3026 (2019)

    Article  Google Scholar 

  8. Akhavan, H., Ribeiro, P.: Approximations by reduced-order models for nonlinear flutter of variable stiffness composite plates. In: SAMPE 2019|Charlotte, NC SAMPE, Charlotte, NC (2019). https://doi.org/10.33599/nasampe/s.19.1499

  9. Abdelbaki, A., Païdoussis, M., Misra, A.: A nonlinear model for a hanging tubular cantilever simultaneously subjected to internal and confined external axial flows. J. Sound Vib. 449, 349 (2019)

    Article  Google Scholar 

  10. Baghdasaryan, G., Mikilyan, M., Saghoyan, R.: Behavior of nonlinear flutter-type oscillations of flexible plates in supersonic gas flow. J. Aerosp. Eng. 30(5), 04017037 (2017)

    Article  Google Scholar 

  11. Chandiramani, N.K., Plaut, R.H., Librescu, L.I.: Non-linear flutter of a buckled shear-deformable composite panel in a high-supersonic flow. Int. J. Nonlinear Mech. 30(2), 149 (1995)

    Article  Google Scholar 

  12. Chandiramani, N.K., Plaut, R.H., Librescu, L.I.: Nonperiodic flutter of a buckled composite panel. Sadhana 20(2–4), 671 (1995)

    Article  Google Scholar 

  13. Chin, C., Nayfeh, A., Mook, D.: The response of a nonlinear system with a nonsemisimple one-to-one resonance to a combination parametric resonance. Int. J. Bifurc. Chaos 5(04), 971 (1995)

    Article  Google Scholar 

  14. Dessi, D., Mastroddi, F.: Limit-cycle stability reversal via singular perturbation and wing-flap flutter. J. Fluids Struct. 19(6), 765 (2004)

    Article  Google Scholar 

  15. Dimitriadis, G.: Shooting-based complete bifurcation prediction for aeroelastic systems with freeplay. J. Aircr. 48(6), 1864 (2011)

    Article  Google Scholar 

  16. Dowell, E.: Panel flutter-a review of the aeroelastic stability of plates and shells. AIAA J. 8(3), 385 (1970)

    Article  Google Scholar 

  17. He, S., Yang, Z., Gu, Y.: Limit cycle oscillation behavior of transonic control surface buzz considering free-play nonlinearity. J. Fluids Struct. 61, 431 (2016)

    Article  Google Scholar 

  18. Irani, S., Sarrafzadeh, H., Amoozgar, M.R.: Bifurcation in a 3-DOF airfoil with cubic structural nonlinearity. Chin. J. Aeronaut. 24(3), 265 (2011)

    Article  Google Scholar 

  19. Krack, M.: Nonlinear modal analysis of nonconservative systems: extension of the periodic motion concept. Comput. Struct. 154, 59 (2015)

    Article  Google Scholar 

  20. Mair, C., Rezgui, D., Titurus, B.: Nonlinear stability analysis of whirl flutter in a rotor–nacelle system. Nonlinear Dyn. 94(3), 2013 (2018)

    Article  Google Scholar 

  21. Meng, L.C., Li, F.M., Yao, G., Zhang, W.: Nonlinear dynamics analysis of a thin rectangular plate in subsonic airflow. Math. Mech. Solids 21(10), 1184 (2016)

    Article  MathSciNet  Google Scholar 

  22. Shishaeva, A., Vedeneev, V., Aksenov, A.: Nonlinear single-mode and multi-mode panel flutter oscillations at low supersonic speeds. J. Fluids Struct. 56, 205 (2015)

    Article  Google Scholar 

  23. Yang, Z., He, S., Gu, Y.: Transonic limit cycle oscillation behavior of an aeroelastic airfoil with free-play. J. Fluids Struct. 66, 1 (2016)

    Article  Google Scholar 

  24. Yang, X.D., Zhang, W., Wang, H.B., Yao, M.H.: The nonlinear dynamical analysis of a sandwich plate with in-plane loading in supersonic flow. Int. J. Bifurc. Chaos 26(09), 1650144 (2016)

    Article  MathSciNet  Google Scholar 

  25. Zafari, E., Jalili, M., Mazidi, A.: Analytical nonlinear flutter and sensitivity analysis of aircraft wings subjected to a transverse follower force. Proc Inst Mech Eng G J Aerosp Eng 233(4), 1503 (2019)

    Article  Google Scholar 

  26. Chen, T., Xu, M., Xie, D., An, X.: Post-flutter response of a flexible cantilever plate in low subsonic flows. Int. J. Non-Linear Mech. 91, 113 (2017)

    Article  Google Scholar 

  27. Zhang, W., Chen, L.L., Guo, X.Y., Sun, L.: Nonlinear dynamical behaviors of deploying wings in subsonic air flow. J. Fluids Struct. 74, 340 (2017)

    Article  Google Scholar 

  28. Hao, Y., Niu, Y., Zhang, W., Li, S., Yao, M., Wang, A.: Supersonic flutter analysis of FGM shallow conical panel accounting for thermal effects. Meccanica 53(1–2), 95 (2018)

    Article  MathSciNet  Google Scholar 

  29. Chai, Y., Li, F., Song, Z.: Nonlinear vibrations, bifurcations and chaos of lattice sandwich composite panels on Winkler–Pasternak elastic foundations with thermal effects in supersonic airflow. Meccanica 54(7), 919 (2019)

    Article  MathSciNet  Google Scholar 

  30. Chai, Y., Li, F., Song, Z.: Nonlinear flutter suppression and thermal buckling elimination for composite lattice sandwich panels. AIAA J. 57(11), 4863 (2019)

    Article  Google Scholar 

  31. Zhao, M.H., Zhang, W.: Nonlinear dynamics of composite laminated cantilever rectangular plate subject to third-order piston aerodynamics. Acta Mech. 225(7), 1985 (2014). https://doi.org/10.1007/s00707-013-1035-7

    Article  MathSciNet  MATH  Google Scholar 

  32. Guimarães, T.A., Castro, S.G., Cesnik, C.E., Rade, D.A.: Supersonic flutter and buckling optimization of tow-steered composite plates. AIAA J. 57(1), 397 (2018)

    Article  Google Scholar 

  33. Fazilati, J.: Panel flutter of curvilinear composite laminated plates in the presence of delamination. J. Compos. Mater. 52(20), 2789 (2018)

    Article  Google Scholar 

  34. Khalafi, V., Fazilati, J.: Supersonic panel flutter of variable stiffness composite laminated skew panels subjected to yawed flow by using NURBS-based isogeometric approach. J. Fluids Struct. 82, 198 (2018)

    Article  Google Scholar 

  35. Stodieck, O., Cooper, J., Weaver, P., Kealy, P.: Optimization of tow-steered composite wing laminates for aeroelastic tailoring. AIAA J. 53(8), 2203 (2015). https://doi.org/10.2514/1.J053599

    Article  Google Scholar 

  36. Stodieck, O., Cooper, J.E., Weaver, P.M., Kealy, P.: Improved aeroelastic tailoring using tow-steered composites. Compos. Struct. 106, 703 (2013)

    Article  Google Scholar 

  37. Ouyang, X., Liu, Y.: Flutter of tow steered composite laminates under supersonic flow. In: Proceedings of the 7th International Conference of Mechanics and Materials in Design (2017)

  38. Stanford, B.K., Jutte, C.V.: Comparison of curvilinear stiffeners and tow steered composites for aeroelastic tailoring of aircraft wings. Comput. Struct. 183, 48 (2017). https://doi.org/10.1016/j.compstruc.2017.01.010

    Article  Google Scholar 

  39. Stanford, B.K., Jutte, C.V., Wu, K.C.: Aeroelastic benefits of tow steering for composite plates. Compos. Struct. 118, 416 (2014). https://doi.org/10.1016/j.compstruct.2014.08.007

    Article  Google Scholar 

  40. Haddadpour, H., Zamani, Z.: Curvilinear fiber optimizationtools for aeroelastic design of composite wings. J. Fluids Struct. 33, 180 (2012). https://doi.org/10.1016/j.jfluidstructs.2012.05.008

    Article  Google Scholar 

  41. Guimarães, T.A.M., Castro, S.G.P., Rade, D.A., Cesnik, C.E.S.: Panel flutter analysis and optimization of composite tow steered plates. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference Grapevine, Texas, p. 1118. (2017). https://doi.org/10.2514/6.2017-1118

  42. Akhavan, H., Ribeiro, P.: Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers. Compos. Struct. 93(11), 3040 (2011). https://doi.org/10.1016/j.compstruct.2011.04.027

    Article  Google Scholar 

  43. Akhavan, H., Ribeiro, P., De Moura, M.F.S.F.: Large deflection and stresses in variable stiffness composite laminates with curvilinear fibres. Int. J. Mech. Sci. 73, 14 (2013). https://doi.org/10.1016/j.ijmecsci.2013.03.013

    Article  Google Scholar 

  44. Akhavan, H., Ribeiro, P., De Moura, M.F.S.F.: Damage onset on tow-placed variable stiffness composite laminates. Compos. Struct. 113, 419 (2014). https://doi.org/10.1016/j.compstruct.2014.03.038

    Article  Google Scholar 

  45. Akhavan, H., Ribeiro, P., De Moura, M.F.S.F.: Composite laminates with linearly varying fiber angles under static and dynamic loads. In: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Boston, Massachusetts, p. 1565. (2013). https://doi.org/10.2514/6.2013-1565

  46. Akhavan, H., Ribeiro, P.: Geometrically non-linear periodic forced vibrations of imperfect laminates with curved fibres by the shooting method. Compos. B Eng. 109(15), 286 (2017). https://doi.org/10.1016/j.compositesb.2016.10.059

    Article  Google Scholar 

  47. Akhavan, H., Ribeiro, P.: Free geometrically nonlinear oscillations of perfect and imperfect laminates with curved fibres by the shooting method. Nonlinear Dyn. 81(1–2), 949 (2015). https://doi.org/10.1007/s11071-015-2043-z

    Article  Google Scholar 

  48. Akhavan, H., Ribeiro, P.: Non-linear forced periodic oscillations of laminates with curved fibres by the shooting method. Int. J. Non-Linear Mech. 76, 176 (2015). https://doi.org/10.1016/j.ijnonlinmec.2015.06.004

    Article  Google Scholar 

  49. Akhavan, H., Ribeiro, P.: Aeroelasticity of composite plates with curvilinear fibres in supersonic flow. Compos. Struct. 194(15), 335 (2018). https://doi.org/10.1016/j.compstruct.2018.03.101

    Article  Google Scholar 

  50. Tatting, B.F., Gürdal, Z., Jegley, D.: Design and manufacture of elastically tailored tow placed plates. Technical report CR-2002-211919, NASA (2002)

  51. Vlasov, B.F.: On the Equations of Bending of Plates. Dokla Ak Nauk Azerbeijanskoi-SSR 3, 955 (1957)

    Google Scholar 

  52. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004). https://doi.org/10.1201/b12409

    Book  MATH  Google Scholar 

  53. Han, W., Petyt, M., Hsiao, K.M.: An investigation into geometrically nonlinear analysis of rectangular laminated plates using the hierarchical finite element method. Finite Elem. Anal. Des. 18(1–3), 273 (1994). https://doi.org/10.1016/0168-874x(94)90107-4

    Article  MATH  Google Scholar 

  54. Bardell, N.S.: Free vibration analysis of a flat plate using the hierarchical finite element method. J. Sound Vib. 151(2), 263 (1991). https://doi.org/10.1016/0022-460x(91)90855-e

    Article  Google Scholar 

  55. Dowell, E.H., Clark, R., Cox, D., Curtiss, H.C., Edwards, J.W., Hall, K.C., Peters, D.A., Scanlan, R., Simiu, E., Sisto, F., et al.: A Modern Course in Aeroelasticity. Kluwer Academic Publishers, Dordrecht (2004)

    MATH  Google Scholar 

  56. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, Cambridge (2008). https://doi.org/10.1017/cbo9780511619694

    Book  MATH  Google Scholar 

  57. Amabili, M., Pellicano, F.: Multimode approach to nonlinear supersonic flutter of imperfect circular cylindrical shells. J. Appl. Mech. 69(2), 117 (2002). https://doi.org/10.1115/1.1435366

    Article  MATH  Google Scholar 

  58. Meirovitch, L.: Computational Methods in Structural Dynamics. Springer, Berlin (1980)

    MATH  Google Scholar 

  59. Ribeiro, P.: On the influence of membrane inertia and shear deformation on the geometrically non-linear vibrations of open, cylindrical, laminated clamped shells. Compos. Sci. Technol. 69(2), 176 (2009). https://doi.org/10.1016/j.compscitech.2008.09.038

    Article  Google Scholar 

  60. Petyt, M.: Introduction to Finite Element Vibration Analysis. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  61. Bathe, K.J., Wilson, E.L.: Numerical Methods in Finite Element Analysis. Prentice-Hall, Upper Saddle River (1976)

    MATH  Google Scholar 

  62. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  63. Ribeiro, P.: Periodic vibration of plates with large displacements. AIAA J. 40(1), 185 (2002)

    Article  Google Scholar 

  64. Ribeiro, P.: Non-linear forced vibrations of thin/thick beams and plates by the finite element and shooting methods. Comput. Struct. 82(17–19), 1413 (2004)

    Article  Google Scholar 

  65. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley-Interscience, Hoboken (1995)

    Book  Google Scholar 

  66. Dowell, E.H.: Nonlinear oscillations of a fluttering plate. AIAA J. 4(7), 1267 (1966). https://doi.org/10.2514/3.3658

    Article  Google Scholar 

  67. Navazi, H.M., Haddadpour, H.: Nonlinear aero-thermoelastic analysis of homogeneous and functionally graded plates in supersonic airflow using coupled models. Compos. Struct. 93(10), 2554 (2011). https://doi.org/10.1016/j.compstruct.2011.04.018

    Article  Google Scholar 

  68. Antunes, A.M., Ribeiro, P., Rodrigues, J.D., Akhavan, H.: Modal analysis of a variable stiffness composite laminated plate with diverse boundary conditions: experiments and modelling. Compos. Struct. 239, 111974 (2020). https://doi.org/10.1016/j.compstruct.2020.111974

    Article  Google Scholar 

  69. Bailie, J.A., Ley, R.P., Pasricha, A.: A summary and review of composite laminate design guidelines. Final Report NAS1-19347, NASA (1997)

Download references

Funding

This research was carried out in the framework of project No 030348, POCI-01-0145-FEDER-030348, “Laminated composite panels reinforced with carbon nanotubes and curvilinear carbon fibres for enhanced vibration and flutter characteristics”, funded by FEDER, through Programa Operacional Competitividade e Internacionalização—COMPETE 2020, and by National Funds (PIDDAC), through FCT/MCTES. The authors gratefully acknowledge the funding provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Akhavan.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhavan, H., Ribeiro, P. Stability and bifurcations in oscillations of composite laminates with curvilinear fibres under a supersonic airflow. Nonlinear Dyn 103, 3037–3058 (2021). https://doi.org/10.1007/s11071-020-05838-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05838-6

Keywords

Navigation