Skip to main content
Log in

Free geometrically nonlinear oscillations of perfect and imperfect laminates with curved fibres by the shooting method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Large-amplitude free vibrations of composite laminated plates with curvilinear fibres are studied. The fibre angle in a ply changes linearly in relation to one Cartesian coordinate. The plates are rectangular with geometric imperfections (out-of-planarity). The edges of the laminates are clamped, except in comparison studies, where simply supported conditions are applied. The displacement field is modelled by a third-order shear deformation theory, and the equations of motion (full model), in the time-domain, are obtained using a \(p\)-version finite element method. When possible, the model is statically condensed neglecting in-plane inertias but still taking into account the in-plane displacements. The condensed model is transformed to modal coordinates in order to have a model with fewer degrees of freedom (reduced model). Backbone curves are found by the shooting method, using Runge–Kutta–Fehlberg method modified with Cash–Karp method to control the error with adaptive stepsize. Backbone curves of composite laminates with different curvilinear fibre angles are plotted and compared. In addition to the fundamental backbone curve, the method is able to find bifurcations leading to other branches, as shown in some examples. Oscillations of some points are studied in detail using phase-plane plots and Fourier spectra of deflection. Finally, the effects of geometrical imperfection on the backbone curves are analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ribeiro, P., Akhavan, H., Teter, A., Warminski, J.: A review on the mechanical behaviour of curvilinear fibre composite laminated panels. J. Compos. Mater. 48(22), 2761–2777 (2014). doi:10.1177/0021998313502066

    Article  Google Scholar 

  2. Ghiasi, H., Fayazbakhsh, K., Pasini, D., Lessard, L.: Optimum stacking sequence design of composite materials part II: variable stiffness design. Compos. Struct. 93(1), 1–13 (2010). doi:10.1016/j.compstruct.2010.06.001

    Article  Google Scholar 

  3. Akhavan, H., Ribeiro, P.: Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers. Compos. Struct. 93(11), 3040–3047 (2011). doi:10.1016/j.compstruct.2011.04.027

    Article  Google Scholar 

  4. Akhavan, H., Ribeiro, P., de Moura, M.F.S.F.: Large deflection and stresses in variable stiffness composite laminates with curvilinear fibres. Int. J. Mech. Sci. 73, 14–26 (2013)

    Article  Google Scholar 

  5. Yazdani, S., Ribeiro, P., Rodrigues, J.D.: A p-version layerwise model for large deflection of composite plates with curvilinear fibres. Compos. Struct. 108, 181–190 (2014). doi:10.1016/j.compstruct.2013.09.014

    Article  Google Scholar 

  6. Akhavan, H., Ribeiro, P., de Moura, M.F.S.F.: Damage onset on tow-placed variable stiffness composite laminates. Compos. Struct. 113, 419–428 (2014). doi:10.1016/j.compstruct.2014.03.038

    Article  Google Scholar 

  7. Akhavan, H., Ribeiro, P., De Moura, M.: Composite laminates with linearly varying fiber angles under static and dynamic loads. In: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2013)

  8. Ribeiro, P., Akhavan, H.: Non-linear vibrations of variable stiffness composite laminated plates. Compos. Struct. 94(8), 2424–2432 (2012). doi:10.1016/j.compstruct.2012.03.025

    Article  Google Scholar 

  9. Ribeiro, P.: Non-linear free periodic vibrations of variable stiffness composite laminated plates. Nonlinear Dyn. 70(2), 1535–1548 (2012)

    Article  MathSciNet  Google Scholar 

  10. Houmat, A.: Nonlinear free vibration of laminated composite rectangular plates with curvilinear fibers. Compos. Struct. 106, 211–224 (2013). doi:10.1016/j.compstruct.2013.05.058

    Article  Google Scholar 

  11. Camier, C., Touze, C., Thomas, O.: Non-linear vibrations of imperfect free-edge circular plates and shells. Eur. J. Mech. A Solids 28(3), 500–515 (2009). doi:10.1016/j.euromechsol.2008.11.005

    Article  MATH  Google Scholar 

  12. Amabili, M.: Nonlinear vibrations and stability of shells and plates. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  13. Alijani, F., Amabili, M., Ferrari, G., D’Alessandro, V.: Nonlinear vibrations of laminated and sandwich rectangular plates with free edges. Part 2: experiments and comparisons. Compos. Struct. 105, 437–445 (2013). doi:10.1016/j.compstruct.2013.05.020

    Article  Google Scholar 

  14. Amabili, M.: Theory and experiments for large-amplitude vibrations of rectangular plates with geometric imperfections. J. Sound Vib. 291(3–5), 539–565 (2006)

    Article  Google Scholar 

  15. Amabili, M.: Theory and experiments for large-amplitude vibrations of circular cylindrical panels with geometric imperfections. J Sound Vib. 298(1–2), 43–72 (2006)

    Article  Google Scholar 

  16. Nanda, N., Pradyumna, S.: Nonlinear dynamic response of laminated shells with imperfections in hygrothermal environments. J. Compos. Mater. 45(20), 2103–2112 (2011). doi:10.1177/0021998311401061

    Article  Google Scholar 

  17. Waldhart, C.: Analysis of Tow-Placed, Variable-Stiffness Laminates. Virginia Polytechnic Institute and State University, Blacksburg (1996)

    Google Scholar 

  18. Meirovitch, L.: Computational Methods in Structural Dynamics, vol. 5. Springer, Berlin (1980)

    MATH  Google Scholar 

  19. Thomson, W.T., Dahleh, M.D.: Theory of Vibration with Applications, 5th edn. Prentice Hall, Upper Saddle River (1998)

    Google Scholar 

  20. Reddy, J.N.: Mechanics of Laminated Composite Plates: Theory and Analysis. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  21. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley Series in Nonlinear Science. Wiley, New York (1995)

    Book  Google Scholar 

  22. Han, W.: The Analysis of Isotropic and Laminated Rectangular Plates Including Geometrical Non-linearity Using the P-Version Finite Element Method. University of Southampton, Southampton (1993)

  23. Szabó, B.A., Babuška, I.: Finite Element Analysis. Wiley, New York (1991)

    MATH  Google Scholar 

  24. Ribeiro, P.: A hierarchical finite element for geometrically non-linear vibration of thick plates. Meccanica 38(1), 115–130 (2003)

    Article  Google Scholar 

  25. Han, W.M., Petyt, M., Hsiao, K.M.: An investigation into geometrically nonlinear-analysis of rectangular laminated plates using the hierarchical finite-element method. Finite Elem. Anal. Des. 18(1–3), 273–288 (1994). doi:10.1016/0168-874x(94)90107-4

    Article  Google Scholar 

  26. Amabili, M., Reddy, J.N.: A new non-linear higher-order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells. Int. J. Non-Linear Mech. 45(4), 409–418 (2010). doi:10.1016/j.ijnonlinmec.2009.12.013

    Article  Google Scholar 

  27. Amabili, M.: A non-linear higher-order thickness stretching and shear deformation theory for large-amplitude vibrations of laminated doubly curved shells. Int. J. Non-Linear Mech. 58, 57–75 (2014). doi:10.1016/j.ijnonlinmec.2013.08.006

    Article  Google Scholar 

  28. Ribeiro, P.: On the influence of membrane inertia and shear deformation on the geometrically non-linear vibrations of open, cylindrical, laminated clamped shells. Compos. Sci. Technol. 69(2), 176–185 (2009). doi:10.1016/j.compscitech.2008.09.038

    Article  MathSciNet  Google Scholar 

  29. Press, W.H.: Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  30. Ribeiro, P.: Periodic vibration of plates with large displacements. AIAA J 40(1), 185–188 (2002). doi:10.2514/2.1633

    Article  MathSciNet  Google Scholar 

  31. Ribeiro, P.: Non-linear forced vibrations of thin/thick beams and plates by the finite element and shooting methods. Comput. Struct. 82(17–19), 1413–1423 (2004)

    Article  Google Scholar 

  32. Waldhart, C.: Analysis of Tow-Placed, Variable-Stiffness Laminates. University Libraries, Virginia Polytechnic Institute and State University. http://scholar.lib.vt.edu/theses/available/etd-520112859651791/ (1996)

  33. Rafiee, M., He, X., Liew, K.: Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection. Int. J. Non-Linear Mech. 59, 37–51 (2014)

    Article  Google Scholar 

  34. Kitipornchai, S., Yang, J., Liew, K.M.: Semi-analytical solution for nonlinear vibration of laminated FGM plates with geometric imperfections. Int. J. Solids Struct. 41(9–10), 2235–2257 (2004)

    Article  MATH  Google Scholar 

  35. Bhimaraddi, A.: Large-amplitude vibrations of imperfect antisymmetric angle-ply laminated plates. J. Sound Vib. 162(3), 457–470 (1993)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The first author would like to acknowledge the support from the Portuguese Science and Technology Foundation under PhD grant SFRH/BD/81707/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Akhavan.

Appendices

Appendix 1: Coefficients of the full-order equations

The elements of the symmetric mass matrix are defined first:

$$\begin{aligned} \mathbf{M}^{11}= & {} \mathbf{M}^{22}=\rho h\int _\varOmega \mathbf{N}^{\mathbf{u}}{\mathbf{N}^\mathbf{u}}^\mathrm{T}\,\,\hbox {d}\varOmega ,\nonumber \\ \mathbf{M}^{33}= & {} \rho h\int _\varOmega \mathbf{N}^{\mathbf{w}}\mathbf{N}^{\mathbf{w}^\mathrm{T}}\,\,\hbox {d}\varOmega \nonumber \\&+\,\frac{\rho h^{3}}{252}\int _\varOmega \left( {\mathbf{N}_{,x}^\mathbf{w} {\mathbf{N}_{,x}^\mathbf{w}}^\mathrm{T}+\mathbf{N}_{,y}^\mathbf{w} {\mathbf{N}_{,y}^\mathbf{w}}^\mathrm{T}} \right) \,\,\hbox {d}\varOmega ,\nonumber \\ \mathbf{M}^{34}= & {} -\frac{4\rho h^{3}}{315}\int _\varOmega \mathbf{N}_{,x}^\mathbf{w} {\mathbf{N}^{\varvec{\upphi }_\mathbf{x}}}^\mathrm{T}\,\,\hbox {d}\varOmega ,\\ \mathbf{M}^{35}= & {} -\frac{4\rho h^{3}}{315}\int _\varOmega \mathbf{N}_{,y}^\mathbf{w} {\mathbf{N}^{\varvec{\upphi }_\mathbf{y}}}^\mathrm{T}\,\,\hbox {d}\varOmega ,\nonumber \\ \mathbf{M}^{44}= & {} \frac{17\rho h^{3}}{315}\int _\varOmega \mathbf{N}^{\varvec{\upphi }_\mathbf{x} }{N^{\varvec{\upphi }_{{\mathbf {x}}}}}^\mathrm{T}\,\,\hbox {d}\varOmega ,\nonumber \\ \mathbf{M}^{55}= & {} \frac{17\rho h^{3}}{315}\int _\varOmega \mathbf{N}^{\varvec{\upphi }_\mathbf{y} }\mathbf{N}^{\varvec{\upphi }_\mathbf{y} ^\mathrm{T}}\,\,\hbox {d}\varOmega .\nonumber \end{aligned}$$
(17)

where ‘\(x\)’ in subscript means derivation with respect to \(x\) and so on. \(\varOmega \) denotes surface. The linear stiffness matrix is introduced as

$$\begin{aligned}&\left[ {{\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} {\mathbf{K}_\mathbf{L}^{11} }&{} {\mathbf{K}_\mathbf{L}^{12} }&{} {\mathbf{K}_\mathbf{L}^{13} }&{} \mathbf{0}&{} \mathbf{0} \\ &{} {\mathbf{K}_\mathbf{L}^{22} }&{} {\mathbf{K}_\mathbf{L}^{23} }&{} \mathbf{0}&{} \mathbf{0} \\ &{} &{} {\mathbf{K}_\mathbf{L}^{33} }&{} {\mathbf{K}_\mathbf{L}^{34} }&{} {\mathbf{K}_\mathbf{L}^{35} } \\ &{} &{} &{} {\mathbf{K}_\mathbf{L}^{44} }&{} {\mathbf{K}_\mathbf{L}^{45} } \\ \hbox {sym}&{} &{} &{} &{} {\mathbf{K}_\mathbf{L}^{55} } \\ \end{array} }} \right] \!=\!\left[ {{\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} {\mathbf{K}_{\mathbf{L1}}^{11} }&{} {\mathbf{K}_{\mathbf{L1}}^{12} }&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0} \\ &{} {\mathbf{K}_{\mathbf{L1}}^{22} }&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0} \\ &{} &{} {\mathbf{K}_{\mathbf{L1}}^{33} }&{} {\mathbf{K}_{\mathbf{L1}}^{34} }&{} {\mathbf{K}_{\mathbf{L1}}^{35} } \\ &{} &{} &{} {\mathbf{K}_{\mathbf{L1}}^{44} }&{} {\mathbf{K}_{\mathbf{L1}}^{45} } \\ \hbox {sym}&{} &{} &{} &{} {\mathbf{K}_{\mathbf{L1}}^{55} } \\ \end{array} }} \right] \nonumber \\&\quad +\left[ {{\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0} \\ &{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0} \\ &{} &{} {\mathbf{K}_{\mathbf{L2}}^{33} }&{} {\mathbf{K}_{\mathbf{L2}}^{34} }&{} {\mathbf{K}_{\mathbf{L2}}^{35} } \\ &{} &{} &{} {\mathbf{K}_{\mathbf{L2}}^{44} }&{} {\mathbf{K}_{\mathbf{L2}}^{45} } \\ \hbox {sym}&{} &{} &{} &{} {\mathbf{K}_{\mathbf{L2}}^{55} } \\ \end{array} }} \right] \!+\!\left[ {{\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 0&{} 0&{} {\mathbf{K}_{\mathbf{L3}}^{13} }&{} 0&{} 0 \\ &{} 0&{} {\mathbf{K}_{\mathbf{L3}}^{23} }&{} 0&{} 0 \\ &{} &{} {\mathbf{K}_{\mathbf{L3}}^{33} }&{} 0&{} 0 \\ &{} &{} &{} 0&{} 0 \\ \hbox {sym}&{} &{} &{} &{} 0 \\ \end{array} }} \right] \end{aligned}$$
(18)

with in-plane linear stiffness terms as

$$\begin{aligned}&\left[ {{\begin{array}{c@{\quad }c} {\mathbf{K}_{\mathbf{L1}}^{\mathbf{11}} }&{} {\mathbf{K}_{\mathbf{L1}}^{\mathbf{12}} } \\ {\mathbf{K}_{\mathbf{L1}}^{\mathbf{21}} }&{} {\mathbf{K}_{\mathbf{L1}}^{\mathbf{22}} } \\ \end{array} }} \right] \nonumber \\&\quad =\int _\varOmega \left[ {{\begin{array}{c@{\quad }c@{\quad }c} {\mathbf{N}_{,x}^\mathbf{u} }&{} \mathbf{0}&{} {\mathbf{N}_{,y}^\mathbf{u} } \\ \mathbf{0}&{} {\mathbf{N}_{,y}^\mathbf{u} }&{} {\mathbf{N}_{,x}^\mathbf{u} } \\ \end{array} }} \right] \mathbf{A}\left( x \right) \left[ {{\begin{array}{c@{\quad }c} {\mathbf{N}_{,x}^{\mathbf{u} ^\mathrm{T}}}&{} \mathbf{0} \\ \mathbf{0}&{} {\mathbf{N}_{,y}^{\mathbf{u} ^\mathrm{T}}} \\ {\mathbf{N}_{,y}^{\mathbf{u} ^\mathrm{T}}}&{} {\mathbf{N}_{,x}^{\mathbf{u} ^\mathrm{T}}} \\ \end{array} }} \right] \,\,\hbox {d}\varOmega \nonumber \\ \end{aligned}$$
(19)

with

$$\begin{aligned} \mathbf{A}\left( x \right)= & {} \sum \limits _{k=1}^n h_k \left[ \left[ {\begin{array}{c@{\quad }c@{\quad }c} {U_1 } &{} {U_4 }&{} 0\\ {U_4 } &{} {U_1 }&{} 0\\ 0 &{} 0&{} {U_5 }\\ \end{array} }\right] +\,U_2 \left[ {\begin{array}{c@{\quad }c@{\quad }c} 1 &{} 0&{} 0\\ 0 &{} -1&{} 0\\ 0 &{}0&{}0\\ \end{array} }\right] \cos 2\theta _k \left( x \right) \right. \nonumber \\&+\,U_3 \left[ {\begin{array}{c@{\quad }c@{\quad }c} 1 &{} -1&{} 0\\ {-1} &{} 1&{}0\\ 0 &{}0&{}-1\\ \end{array} }\right] \cos 4\theta _k \left( x \right) \nonumber \\&+\,\frac{U_2 }{2} \left[ {\begin{array}{c@{\quad }c@{\quad }c} 0 &{}0&{}1\\ 0 &{}0&{}1\\ 1 &{}1&{}0\\ \end{array} } \right] sin2\theta _k \left( x \right) \nonumber \\&\left. +\,U_3 \left[ {\begin{array}{c@{\quad }c@{\quad }c} 0 &{}0&{}1\\ 0 &{}0&{}-1\\ 1 &{}-1&{}0\\ \end{array} }\right] \sin 4\theta _k \left( x \right) \right] , \end{aligned}$$
(20)

and with \(n\) representing the number of layers. Coefficients \(U_i , i=1-7,\) are given in Ref. [8]. The remaining components of the linear stiffness matrix are:

$$\begin{aligned} \mathbf{K}_{\mathbf{L1}}^{\mathbf{33}} \!=\!\int _\varOmega \left\lfloor {\begin{array}{ccc} {\mathbf{N}_{,xx}^\mathbf{w} }&{}\quad {\mathbf{N}_{,yy}^\mathbf{w} }&{}\quad {2\mathbf{N}_{,xy}^\mathbf{w} } \\ \end{array} }\right\rfloor \mathbf{F}\left( x \right) \left\{ {{\begin{array}{c} {\mathbf{N}_{,xx}^\mathbf{w}}^\mathrm{T} \\ {\mathbf{N}_{,yy}^{\mathbf{w}}}^\mathrm{T} \\ {2{\mathbf{N}_{,xy}^{\mathbf{w}}}^\mathrm{T}} \\ \end{array} }} \right\} \hbox {d}\varOmega \nonumber \\ \end{aligned}$$
(21)

where

$$\begin{aligned}&\mathbf{F}\left( x \right) =\sum \limits _{k=1}^n \left( {c^{2}\frac{z_k^7 -z_{k-1}^7 }{7}} \right) \left[ \left[ {\begin{array}{ccc} {U_1 } &{}{U_4 }&{}0 \\ {U_4 } &{}{U_1 }&{}0 \\ 0 &{}0 &{}{U_5 } \\ \end{array} } \right] \right. \nonumber \\&\quad +\,U_2 \left[ {\begin{array}{ccc} 1 &{}0 &{}0\\ 0 &{}{-1}&{}0\\ 0 &{}0 &{}0\\ \end{array} }\right] \cos 2\theta _k \left( x \right) +U_3 \left[ {\begin{array}{ccc} 1 &{}{-1}&{}0 \\ {-1}&{}1 &{}0 \\ 0 &{}0 &{}{-1} \\ \end{array} }\right] \cos 4\theta _k \left( x \right) \nonumber \\&\quad \left. +\,\frac{U_2 }{2}\left[ {\begin{array}{ccc} 0 &{}0 &{}1\\ 0 &{}0 &{}1\\ 1 &{}1 &{}0\\ \end{array} }\right] \sin 2\theta _k \left( x \right) +U_3 \left[ {{\begin{array}{ccc} 0 &{}0 &{}1 \\ 0 &{}0 &{}{-1} \\ 1 &{}{-1}&{}0 \\ \end{array} }} \right] \sin 4\theta _k \left( x \right) \right] .\nonumber \\ \end{aligned}$$
(22)
$$\begin{aligned}&\left[ {{\begin{array}{ccc} {\mathbf{K}_{\mathbf{L2}}^{\mathbf{33}} }&{} {\mathbf{K}_{\mathbf{L2}}^{\mathbf{34}} }&{} {\mathbf{K}_{\mathbf{L2}}^{\mathbf{35}} } \\ {\mathbf{K}_{\mathbf{L2}}^{\mathbf{43}} }&{} {\mathbf{K}_{\mathbf{L2}}^{\mathbf{44}} }&{} {\mathbf{K}_{\mathbf{L2}}^{\mathbf{45}} } \\ {\mathbf{K}_{\mathbf{L2}}^{\mathbf{53}} }&{} {\mathbf{K}_{\mathbf{L2}}^{\mathbf{54}} }&{} {\mathbf{K}_{\mathbf{L2}}^{\mathbf{55}} } \\ \end{array} }} \right] \nonumber \\&\quad =\int _\varOmega \left[ {{\begin{array}{cc} {\mathbf{N}_{,y}^\mathbf{w} }&{} {\mathbf{N}_{,x}^\mathbf{w} } \\ \mathbf{0}&{} {\mathbf{N}^{\varvec{\upphi }_\mathbf{x} }} \\ {\mathbf{N}^{\varvec{\upphi }_\mathbf{y} }}&{} \mathbf{0} \\ \end{array} }} \right] \mathbf{O}\left( x \right) \left[ {{\begin{array}{ccc} {\mathbf{N}_{,y}^{\mathbf{w}}}^\mathrm{T}&{} \mathbf{0}&{} {\mathbf{N}^{\varvec{\upphi }_\mathbf{y}}}^\mathrm{T} \\ {\mathbf{N}_{,x}^{\mathbf{w} }}^\mathrm{T}&{} {\mathbf{N}^{\varvec{\upphi }_\mathbf{x}}} ^\mathrm{T}&{} \mathbf{0} \\ \end{array} }} \right] \hbox {d}\varOmega \end{aligned}$$
(23)

where

$$\begin{aligned}&\mathbf{O}\left( x \right) =\sum \limits _{k=1}^n \left( {h_k -2c\left( {z_k^3 -z_{k-1}^3 } \right) +\frac{9}{5}c^{2}\left( {z_k^5 -z_{k-1}^5 } \right) } \right) \nonumber \\&\qquad \times \left[ U_6 \left[ {{\begin{array}{cc} 1 &{}0 \\ 0 &{}1 \\ \end{array} }} \right] +U_7 \left[ {{\begin{array}{cc} 1 &{}0 \\ 0 &{}{-1} \\ \end{array} }} \right] \cos 2\theta _k \left( x \right) \right. \nonumber \\&\qquad \left. -\,U_7 \left[ {{\begin{array}{cc} 0 &{}1\\ 1 &{}0\\ \end{array} }} \right] \sin 2\theta _k \left( x \right) \right] .\end{aligned}$$
(24)
$$\begin{aligned}&\left[ {{\begin{array}{cc} {\mathbf{K}_{\mathbf{L1}}^{\mathbf{34}} }&{} {\mathbf{K}_{\mathbf{L1}}^{\mathbf{35}} } \\ \end{array} }} \right] \nonumber \\&= \int _\varOmega \left[ {{\begin{array}{c@{\quad }c@{\quad }c} {\mathbf{N}_{,xx}^\mathbf{w} }&{} {\mathbf{N}_{,yy}^\mathbf{w} }&{} {2\mathbf{N}_{,xy}^\mathbf{w} } \\ \end{array} }} \right] \mathbf{L}\left( x \right) \left[ {{\begin{array}{ll} {\mathbf{N}_{,x}^{\varvec{\upphi }_\mathbf{x} }}^\mathrm{T}&{} \mathbf{0} \\ \mathbf{0}&{} {\mathbf{N}_{,y}^{\varvec{\upphi }_\mathbf{y}}} ^\mathrm{T} \\ {\mathbf{N}_{,y}^{\varvec{\upphi }_\mathbf{x} }}^\mathrm{T}&{} {\mathbf{N}_{,x}^{\varvec{\upphi }_\mathbf{y} }}^\mathrm{T} \\ \end{array} }} \right] \hbox {d}\varOmega \nonumber \\ \end{aligned}$$
(25)

where

$$\begin{aligned}&\mathbf{L}\left( x \right) =\sum \limits _{k=1}^n \left( {-c\frac{z_k^5 -z_{k-1}^5 }{5}+ c^{2}\frac{z_k^7 -z_{k-1}^7 }{7}} \right) \nonumber \\&\quad \times \left[ \left[ {{\begin{array}{c@{\quad }c@{\quad }c} {U_1 }&{}{U_4 } &{}0 \\ {U_4 }&{}{U_1 } &{}0 \\ 0 &{}0 &{}{U_5 } \\ \end{array} }} \right] \!+\!U_2 \left[ {{\begin{array}{c@{\quad }c@{\quad }c} 1 &{}0 &{}0\\ 0 &{}{-1}&{}0\\ 0 &{}0 &{}0\\ \end{array} }} \right] \cos 2\theta _k \left( x \right) \right. \nonumber \\&\quad +\,U_3 \left[ {{\begin{array}{c@{\quad }c@{\quad }c} 1 &{}{-1}&{}0 \\ {-1}&{}1 &{}0 \\ 0 &{}0 &{}{-1} \\ \end{array} }} \right] \cos 4\theta _k \left( x \right) \nonumber \\&\quad +\,\frac{U_2 }{2}\left[ {{\begin{array}{c@{\quad }c@{\quad }c} 0&{}0&{}1 \\ 0&{}0&{}1 \\ 1&{}1&{}0 \\ \end{array} }} \right] \sin 2\theta _k \left( x \right) \nonumber \\&\quad +\left. U_3 \left[ {{\begin{array}{c@{\quad }c@{\quad }c} 0&{}0 &{}1 \\ 0&{}0 &{}{-1} \\ 1&{}{-1}&{}0 \\ \end{array} }} \right] \sin 4\theta _k \left( x \right) \right] .\end{aligned}$$
(26)
$$\begin{aligned}&\left[ {{\begin{array}{c@{\quad }c} {\mathbf{K}_{\mathbf{L1}}^{\mathbf{44}} }&{} {\mathbf{K}_{\mathbf{L1}}^{\mathbf{45}} } \\ {\mathbf{K}_{\mathbf{L1}}^{\mathbf{54}} }&{} {\mathbf{K}_{\mathbf{L1}}^{\mathbf{55}} } \\ \end{array} }} \right] \nonumber \\&\quad \! =\!\int _\varOmega \left[ {{\begin{array}{l@{\quad }l@{\quad }l} {\mathbf{N}_{,x}^{\varvec{\upphi }_\mathbf{x} } }&{} \mathbf{0}&{} {\mathbf{N}_{,y}^{\varvec{\upphi }_\mathbf{x} } } \\ \mathbf{0}&{} {\mathbf{N}_{,y}^{\varvec{\upphi }_\mathbf{y} } }&{} {\mathbf{N}_{,x}^{\varvec{\upphi }_\mathbf{y} } } \\ \end{array} }} \right] \mathbf{J}\left( x \right) \left[ {{\begin{array}{l@{\quad }l} {\mathbf{N}_{,x}^{\varvec{\upphi }_\mathbf{x}}}^\mathrm{T}&{} \mathbf{0} \\ \mathbf{0}&{} {\mathbf{N}_{,y}^{\varvec{\upphi }_\mathbf{y}}}^\mathrm{T} \\ {\mathbf{N}_{,y}^{\varvec{\upphi }_\mathbf{x}}}^\mathrm{T}&{} {\mathbf{N}_{,x}^{\varvec{\upphi }_\mathbf{y}}}^\mathrm{T} \\ \end{array} }} \right] \hbox {d}\varOmega \nonumber \\ \end{aligned}$$
(27)

where

$$\begin{aligned} \mathbf{J}\left( x \right)= & {} \sum \limits _{k=1}^n \left( {\frac{z_k^3 -z_{k-1}^3 }{3}-2c\frac{z_k^5 -z_{k-1}^5 }{5}+c^{2}\frac{z_k^7 -z_{k-1}^7 }{7}} \right) \nonumber \\&\quad \times \left[ \left[ {{\begin{array}{ccc} {U_1 }&{}{U_4 }&{}0 \\ {U_4 }&{}{U_1 }&{}0 \\ 0 &{}0 &{}{U_5 } \\ \end{array} }} \right] +U_2 \left[ {{\begin{array}{ccc} 1&{}0 &{}0 \\ 0&{}{-1}&{}0 \\ 0&{}0 &{}0 \\ \end{array} }} \right] \cos 2\theta _k \left( x \right) \right. \nonumber \\&\quad +\,\,U_3 \left[ {{\begin{array}{ccc} 1 &{}{-1}&{}0 \\ {-1}&{}1 &{}0 \\ 0 &{}0 &{}{-1} \\ \end{array} }} \right] \cos 4\theta _k \left( x \right) \nonumber \\&\quad +\,\frac{U_2 }{2} \left[ {{\begin{array}{ccc} 0&{}0&{}1 \\ 0&{}0&{}1 \\ 1&{}1&{}0 \\ \end{array} }} \right] \sin 2\theta _k \left( x \right) \nonumber \\&\quad \left. +\,\,U_3 \left[ {{\begin{array}{ccc} 0&{}0 &{}1 \\ 0&{}0 &{}{-1} \\ 1&{}{-1}&{}0 \\ \end{array} }} \right] \sin 4\theta _k \left( x \right) \right] . \end{aligned}$$
(28)

Constant terms affected by imperfection are \(\mathbf{K}_{\mathbf{L3}}^{13} , \mathbf{K}_{\mathbf{L3}}^{23} \) and \(\mathbf{K}_{\mathbf{L3}}^{33} \) as

$$\begin{aligned}&\left[ {{\begin{array}{c} {\mathbf{K}_{\mathbf{L3}}^{\mathbf{13}} } \\ {\mathbf{K}_{\mathbf{L3}}^{\mathbf{23}} } \\ \end{array} }} \right] =\int _\varOmega \left[ {{\begin{array}{lll} {\mathbf{N}_{,x}^\mathbf{u} }&{} \mathbf{0}&{} {\mathbf{N}_{,y}^\mathbf{u} } \\ \mathbf{0}&{} {\mathbf{N}_{,y}^\mathbf{u} }&{} {\mathbf{N}_{,x}^\mathbf{u} } \\ \end{array} }} \right] \nonumber \\&\quad \times \,\mathbf{A}\left( x \right) \left[ {{\begin{array}{c} {w_{i,x} \mathbf{N}_{,x}^{\mathbf{w}}}^\mathrm{T} \\ {w_{i,y} \mathbf{N}_{,y}^{\mathbf{w}}}^\mathrm{T} \\ w_{i,x} {\mathbf{N}_{,y}^\mathbf{w}}^\mathrm{T}+w_{i,y} {\mathbf{N}_{,x}^\mathbf{w}}^\mathrm{T} \\ \end{array} }} \right] \hbox {d}\varOmega ,\end{aligned}$$
(29)
$$\begin{aligned}&\mathbf{K}_{\mathbf{L3}}^{\mathbf{33}} =\int _\varOmega \left[ {{\begin{array}{ccc} {w_{i,x} \mathbf{N}_{,x}^\mathbf{w} }&{} {w_{i,y} \mathbf{N}_{,y}^\mathbf{w} }&{} {w_{i,x} \mathbf{N}_{,y}^\mathbf{w} +w_{i,y} \mathbf{N}_{,x}^\mathbf{w} } \\ \end{array} }} \right] \nonumber \\&\quad \times \,\mathbf{A}\left( x \right) \left[ {{\begin{array}{c} {w_{i,x} \mathbf{N}_{,x}^{\mathbf{w}}}^\mathrm{T} \\ {w_{i,y} \mathbf{N}_{,y}^{\mathbf{w}}}^\mathrm{T} \\ w_{i,x} {\mathbf{N}_{,y}^\mathbf{w}} ^\mathrm{T}+w_{i,y} {\mathbf{N}_{,x}^\mathbf{w}} ^\mathrm{T} \\ \end{array} }} \right] \hbox {d}\varOmega , \end{aligned}$$
(30)

The elements of the nonlinear stiffness matrix are:

$$\begin{aligned}&\left[ {{{\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} \mathbf{0}&{} \mathbf{0}&{} {\mathbf{K}_{\mathbf{NL}}^{13} \left( {\mathbf{q}_\mathbf{w} \left( t \right) } \right) }&{} \mathbf{0}&{} \mathbf{0} \\ \mathbf{0}&{} \mathbf{0}&{} {\mathbf{K}_{\mathbf{NL}}^{23} \left( {\mathbf{q}_\mathbf{w} \left( t \right) } \right) }&{} \mathbf{0}&{} \mathbf{0} \\ {\mathbf{K}_{\mathbf{NL}}^{31} \left( {\mathbf{q}_\mathbf{w} \left( t \right) } \right) }&{} {\mathbf{K}_{\mathbf{NL}}^{32} \left( {\mathbf{q}_\mathbf{w} \left( t \right) } \right) }&{} {\mathbf{K}_{\mathbf{NL}}^{33} \left( {\mathbf{q}_\mathbf{w} \left( t \right) } \right) }&{} \mathbf{0}&{} \mathbf{0} \\ \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0} \\ \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0} \\ \end{array} }} }\right] \nonumber \\&\quad =\left[ {{{\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} \mathbf{0}&{} \mathbf{0}&{} {\mathbf{K}_{\mathbf{NL1}}^{13} \left( {\mathbf{q}_\mathbf{w} \left( t \right) } \right) }&{} \mathbf{0}&{} \mathbf{0} \\ \mathbf{0}&{} \mathbf{0}&{} {\mathbf{K}_{\mathbf{NL1}}^{23} \left( {\mathbf{q}_\mathbf{w} \left( t \right) } \right) }&{} \mathbf{0}&{} \mathbf{0} \\ {\mathbf{K}_{\mathbf{NL1}}^{31} \left( {\mathbf{q}_\mathbf{w} \left( t \right) } \right) }&{} {\mathbf{K}_{\mathbf{NL1}}^{32} \left( {\mathbf{q}_\mathbf{w} \left( t \right) } \right) }&{} {\mathbf{K}_{\mathbf{NL1}}^{33} \left( {\mathbf{q}_\mathbf{w} \left( t \right) } \right) }&{} \mathbf{0}&{} \mathbf{0} \\ \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0} \\ \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0} \\ \end{array} }} }\right] \nonumber \\&\qquad +\left[ {{{\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0} \\ &{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0} \\ &{} &{} {\mathbf{K}_{\mathbf{NL2}}^{33} \left( {\mathbf{q}_\mathbf{w} \left( t \right) } \right) }&{} \mathbf{0}&{} \mathbf{0} \\ &{} &{} &{} \mathbf{0}&{} \mathbf{0} \\ \hbox {sym}&{} &{} &{} &{} \mathbf{0} \\ \end{array} }} }\right] . \end{aligned}$$
(31)

with

$$\begin{aligned}&\left[ {{\begin{array}{c@{\quad }c} {\mathbf{K}_{\mathbf{NL1}}^{\mathbf{31}} }&{} {\mathbf{K}_{\mathbf{NL1}}^{\mathbf{32}} } \\ \end{array} }} \right] \nonumber \\&\quad =\int _\varOmega \left[ {{\begin{array}{c@{\quad }c@{\quad }c} {w_{, x}^0 \mathbf{N}_{,x}^\mathbf{w} }&{} {w_{, y}^0 \mathbf{N}_{,y}^\mathbf{w} }&{} {w_{, y}^0 \mathbf{N}_{,x}^\mathbf{w} +w_{, x}^0 \mathbf{N}_{,y}^\mathbf{w} } \\ \end{array} }} \right] \nonumber \\&\qquad \times \,\mathbf{A}\left( x \right) \left[ {{\begin{array}{c@{\quad }c} {{\mathbf{N}_{,x}^\mathbf{u}}^\mathrm{T}}&{} \mathbf{0} \\ \mathbf{0}&{} {{\mathbf{N}_{,y}^\mathbf{u}}^\mathrm{T}} \\ {{\mathbf{N}_{,y}^\mathbf{u}}^\mathrm{T}}&{} {{\mathbf{N}_{,x}^\mathbf{u}}^\mathrm{T}} \\ \end{array} }} \right] \hbox {d}\varOmega ,\end{aligned}$$
(32)
$$\begin{aligned}&\left[ {{\begin{array}{c} {\mathbf{K}_{\mathbf{NL1}}^{\mathbf{13}} } \\ {\mathbf{K}_{\mathbf{NL1}}^{\mathbf{23}} } \\ \end{array} }} \right] =0.5\left[ {{\begin{array}{c@{\quad }c} {\mathbf{K}_{\mathbf{NL1}}^{\mathbf{31}} }&{} {\mathbf{K}_{\mathbf{NL1}}^{\mathbf{32}} } \\ \end{array} }} \right] ^\mathrm{T}, \end{aligned}$$
(33)

These nonlinear terms are linearly dependent on the transverse deflection where the following nonlinear term is a quadratic function of generalized transverse coordinates.

$$\begin{aligned} \mathbf{K}_{\mathbf{NL1}}^{\mathbf{33}}= & {} \frac{1}{2}\int _\varOmega \left[ {{\begin{array}{ccc} {w_{, x}^0 \mathbf{N}_{,x}^\mathbf{w} }&{} {w_{, y}^0 \mathbf{N}_{,y}^\mathbf{w} }&{} {w_{, y}^0 \mathbf{N}_{,x}^\mathbf{w} +w_{, x}^0 \mathbf{N}_{,y}^\mathbf{w} } \\ \end{array} }} \right] \nonumber \\&\times \,\mathbf{A}\left( x \right) \left[ {{\begin{array}{c} {w_{, x}^0 \mathbf{N}_{,x}^{\mathbf{w}}}^\mathrm{T} \\ {w_{, y}^0 \mathbf{N}_{,y}^{\mathbf{w}}}^\mathrm{T} \\ {w_{, x}^0 {\mathbf{N}_{,y}^\mathbf{w}} ^\mathrm{T}+w_{, y}^0 {\mathbf{N}_{,x}^\mathbf{w}}^\mathrm{T}} \\ \end{array} }} \right] \hbox {d}\varOmega . \end{aligned}$$
(34)

The nonlinear term \(\mathbf{K}_{\mathbf{NL2}}^{33} \) is affected by imperfection and is linearly dependent on the transverse deflection,

$$\begin{aligned} \mathbf{K}_{\mathbf{NL2}}^{\mathbf{33}}= & {} \int _\varOmega \left( \frac{1}{2}\left[ {{\begin{array}{c@{\quad }c@{\quad }c} {w_{i,x} \mathbf{N}_{,x}^\mathbf{w} }&{} {w_{i,y} \mathbf{N}_{,y}^\mathbf{w} }&{} {w_{i,x} \mathbf{N}_{,y}^\mathbf{w} +w_{i,y} \mathbf{N}_{,x}^\mathbf{w} } \\ \end{array} }} \right] \right. \nonumber \\&\times \,\mathbf{A}\left( x \right) \left[ {{\begin{array}{c} {w_{, x}^0 {\mathbf{N}_{,x}^\mathbf{w}} ^\mathrm{T}} \\ {w_{, y}^0 {\mathbf{N}_{,y}^\mathbf{w}} ^\mathrm{T}} \\ {w_{, x}^0 {\mathbf{N}_{,y}^\mathbf{w}} ^\mathrm{T}+ w_{, y}^0 {\mathbf{N}_{,x}^\mathbf{w} }^\mathrm{T}} \\ \end{array} }} \right] \nonumber \\&+\,\left[ {{\begin{array}{c@{\quad }c@{\quad }c} {w_{, x}^0 \mathbf{N}_{,x}^\mathbf{w} }&{} {w_{, y}^0 \mathbf{N}_{,y}^\mathbf{w} }&{} {w_{, x}^0 \mathbf{N}_{,y}^\mathbf{w} +w_{, y}^0 \mathbf{N}_{,x}^\mathbf{w} } \\ \end{array} }} \right] \nonumber \\&\times \,\left. \mathbf{A}\left( x \right) \left[ {{\begin{array}{c} w_{i,x} {\mathbf{N}_{,x}^\mathbf{w}}^\mathrm{T} \\ w_{i,y} {\mathbf{N}_{,y}^\mathbf{w}} ^\mathrm{T} \\ w_{i,x} {\mathbf{N}_{,y}^\mathbf{w}} ^\mathrm{T}+ w_{i,y} {\mathbf{N}_{,x}^\mathbf{w}} ^\mathrm{T} \\ \end{array} }} \right] \right) \hbox {d}\varOmega . \end{aligned}$$
(35)

Appendix 2: Coefficients of statically condensed equation

Two terms \(\mathbf{K}_{\mathbf{LS}}^{33} \) and \(\mathbf{K}_{\mathbf{NLS}}^{33} \) are introduced here. \(\mathbf{K}_{\mathbf{LS}}^{33} \) is constant terms as

$$\begin{aligned} \mathbf{K}_{\mathbf{LS}}^{33} =\mathbf{K}_{\mathbf{L1}}^{33} +\mathbf{K}_{\mathbf{L2}}^{33} +\mathbf{K}_{\mathbf{L3}}^{33} +\mathbf{K}_{\mathbf{L4}}^{33} , \end{aligned}$$
(36)

where

$$\begin{aligned} \mathbf{K}_{\mathbf{L4}}^{33}= & {} -\left[ {{\begin{array}{c@{\quad }c} {\mathbf{K}_{\mathbf{L3}}^{\mathbf{13}}}^\mathrm{T}&{} {\mathbf{K}_{\mathbf{L3}}^{\mathbf{23}}}^\mathrm{T} \\ \end{array} }} \right] \left[ {{{\begin{array}{c@{\quad }c} {\mathbf{K}_{\mathbf{L1}}^{11} }&{} {\mathbf{K}_{\mathbf{L1}}^{12} } \\ {\mathbf{K}_{\mathbf{L1}}^{21} }&{} {\mathbf{K}_{\mathbf{L1}}^{22} } \\ \end{array} }} }\right] ^{-1}\nonumber \\&\times \left[ {{\begin{array}{c} {\mathbf{K}_{\mathbf{L3}}^{13} +\mathbf{K}_{\mathbf{NL1}}^{13} \left( {\mathbf{q}_\mathbf{w} \left( t \right) } \right) } \\ {\mathbf{K}_{\mathbf{L3}}^{23} +\mathbf{K}_{\mathbf{NL1}}^{23} \left( {\mathbf{q}_\mathbf{w} \left( t \right) } \right) } \\ \end{array} }} \right] . \end{aligned}$$
(37)

\(\mathbf{K}_{\mathbf{NLS}}^{33} \) is dependent linearly and quadratically on transverse deflection,

$$\begin{aligned} \mathbf{K}_{\mathbf{NLS}}^{33} =\mathbf{K}_{\mathbf{NL1}}^{33} +\mathbf{K}_{\mathbf{NL2}}^{33} +\mathbf{K}_{\mathbf{NL3}}^{33} , \end{aligned}$$
(38)

where

$$\begin{aligned} \mathbf{K}_{\mathbf{NL3}}^{33}= & {} -2\left[ {{\begin{array}{c@{\quad }c} {\mathbf{K}_{\mathbf{NL1}}^{13}}^\mathrm{T}&{} {\mathbf{K}_{\mathbf{NL1}}^{23}}^\mathrm{T} \\ \end{array} }} \right] \left[ {{\begin{array}{c@{\quad }c} {\mathbf{K}_{\mathbf{L1}}^{11} }&{} {\mathbf{K}_{\mathbf{L1}}^{12} } \\ {\mathbf{K}_{\mathbf{L1}}^{21} }&{} {\mathbf{K}_{\mathbf{L1}}^{22} } \\ \end{array} }} \right] ^{-1}\nonumber \\&\times \,\left[ {{\begin{array}{c} {\mathbf{K}_{\mathbf{NL1}}^{13} } \\ {\mathbf{K}_{\mathbf{NL1}}^{23} } \\ \end{array} }} \right] . \end{aligned}$$
(39)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhavan, H., Ribeiro, P. Free geometrically nonlinear oscillations of perfect and imperfect laminates with curved fibres by the shooting method. Nonlinear Dyn 81, 949–965 (2015). https://doi.org/10.1007/s11071-015-2043-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2043-z

Keywords

Navigation