Skip to main content
Log in

Nonlinear modes in spatially confined spin–orbit-coupled Bose–Einstein condensates with repulsive nonlinearity

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

It was found that spatially confined spin–orbit (SO) coupling, which can be induced by illuminating Bose–Einstein condensates (BECs) with a Gaussian laser beam, can help trap a spinor Bose gas in multi-dimensional space. Previous works on this topic were all based on a Boson gas featuring an attractive interaction. In this paper, we consider the trapping effect in the case in which the Boson gas features a repulsive interaction. After replacing the repulsive effect, stable excited modes of semi-vortex (SV) type and mixed-mode (MM) type, which cannot be created in a Boson gas with attractive interactions, can be found in the current setting. The trapping ability and the capacity of the confined SO coupling versus the degree of the repulsive strength as well as the order of the excited mode are systematically discussed firstly through the paper. Moreover, the stability of the nonlinear mode trapped in this system with a moving reference frame is also discussed. Unlike the system with homogeneous SO coupling, two different types of stationary mobility modes can be stabilized when the SO coupling moves in the x- and y-directions, respectively. This finding indicates that the system with moving confined SO coupling features a typical anisotropic character that differs from the system with moving homogeneous SO coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stanescu, T.D., Anderson, B., Galitski, V.: Spin-orbit coupled Bose–Einstein condensates. Phys. Rev. A 78, 023616 (2008)

    Google Scholar 

  2. Lin, Y.J., Jiménez-García, K., Spielman, I.B.: Spin-orbit-coupled Bose–Einstein condensates. Nature 471, 83 (2011)

    Google Scholar 

  3. Wu, Z., Zhang, L., Sun, W., Xu, X., Wang, B., Ji, S., Deng, Y., Chen, S., Liu, X., Pan, J.: Realization of two-dimensional spin-orbit coupling for Bose–Einstein condensates. Science 354, 83 (2016)

    Google Scholar 

  4. Deng, Y., Cheng, J., Jing, H., Sun, C.-P., Yi, S.: Spin-orbit-coupled dipolar Bose–Einstein condensates. Phys. Rev. Lett. 108, 125301 (2012)

    Google Scholar 

  5. Huang, L., Meng, Z., Wang, P., Peng, P., Zhang, S., Chen, L., Li, D., Zhou, Q., Zhang, J.: Experimental realization of two-dimensional synthetic spin-orbit coupling in ultracold Fermi gases. Nat. Phys. 12, 540 (2016)

    Google Scholar 

  6. Zhang, Y., Mao, L., Zhang, C.: Mean-field dynamics of spin-orbit coupled Bose–Einstein condensates. Phys. Rev. Lett. 108, 035302 (2012)

    Google Scholar 

  7. Li, Y., Martone, G.I., Pitaevskii, L.P., Stringari, S.: Superstripes and the excitation spectrum of a spin-orbit-coupled Bose–Einstein condensate. Phys. Rev. Lett. 110, 235302 (2013)

    Google Scholar 

  8. Xu, Y., Zhang, Y., Wu, B.: Bright solitons in spin-orbit coupled Bose–Einstein condensates. Phys. Rev. A 87, 013614 (2013)

    Google Scholar 

  9. Zhang, R.F., Zhang, X.F., Li, L.: Exotic vortex structures of the dipolar Bose–Einstein condensates trapped in harmonic-like and toroidal potential. Phys. Lett. A 383, 231 (2019)

    Google Scholar 

  10. Zhang, R.F., Zhang, Y., Li, L.: Ground states of spin-orbit-coupled Bose Einstein condensates in the presence of external magnetic field. Phys. Lett. A 383, 3175 (2019)

    MathSciNet  Google Scholar 

  11. Wen, L., Liang, Y., Zhou, J., Yu, P., Xia, L., Niu, L., Zhang, X.: Effects of linear Zeeman splitting on the dynamics of bright solitons in spin-orbit coupled Bose–Einstein condensates. Acta Phys. Sinica 68, 080301 (2019)

    Google Scholar 

  12. Wen, L., Sun, Q., Wang, H.Q., Ji, A.C., Liu, W.M.: Ground state of spin-1 Bose–Einstein condensates with spin-orbit coupling in a Zeeman field. Phys. Rev. A 86, 043602 (2012)

    Google Scholar 

  13. Wen, L., Zhang, X., Hu, A., Zhou, J., Yu, P., Xia, L., Sun, Q., Ji, A.-C.: Dynamics of bright-bright solitons in Bose–Einstein condensate with Raman-induced one-dimensional spin-orbit coupling. Ann. Phys. 390, 180 (2018)

    MathSciNet  Google Scholar 

  14. Han, W., Zhang, X.F., Wang, D.S., Jiang, H.F., Zhang, W., Zhang, S.G.: Chiral supersolid in spin-orbit-coupled bose gases with soft-core long-range interactions. Phys. Rev. Lett. 121, 030404 (2018)

    Google Scholar 

  15. Zhang, X.F., Kato, M., Han, W., Zhang, S.G., Saito, H.: Spin-orbit-coupled Bose–Einstein condensates held under a toroidal trap. Phys. Rev. A 95, 033620 (2017)

    Google Scholar 

  16. Peng, P., Li, G.Q., Zhao, L.C., Yang, W.L., Yang, Z.Y.: Magnetized vector solitons in a spin-orbit coupled spin-1 Bose–Einstein condensate with Zeeman coupling. Phys. Lett. A 383, 2883 (2019)

    MathSciNet  Google Scholar 

  17. Wang, J.G., Wang, W., Bai, X.D., Yang, S.J.: Ring phases of spin-orbit coupled Bose–Einstein condensate in the radial optical lattices. Eur. Phys. J. Plus 27, 134 (2019)

    Google Scholar 

  18. Wang, L.X., Dai, C.Q., Wen, L., Liu, T., Jiang, H.F., Saito, H., Zhang, ShG, Zhang, X.F.: Dynamics of vortices followed by the collapse of ring dark solitons in a two-component Bose–Einstein condensate. Phys. Rev. A 97, 063607 (2018)

    Google Scholar 

  19. Liu, B., Zhong, R., Chen, Zh, Qin, X., Zhong, H., Li, Y., Malomed, B.A.: Holding and transferring matter-wave solitons against gravity by spin-orbit-coupling tweezers. New J. Phys. 22, 043004 (2020)

    Google Scholar 

  20. Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010)

    Google Scholar 

  21. Qi, X.L., Zhang, S.C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011)

    Google Scholar 

  22. Li, J., Lee, J., Huang, W., Burchesky, S., Shteynas, B., Top, F.C., Jamison, A.O., Ketterle, W.: A stripe phase with supersolid properties in spin-orbit-coupled Bose–Einstein condensates. Nature 543, 91 (2017)

    Google Scholar 

  23. Stuhl, B.K., Lu, H.-I., Aycock, L.M., Genkina, D., Spielman, I.B.: Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Zhai, H.: Degenerate quantum gases with spin-orbit coupling: a review. Rep. Prog. Phys. 78, 026001 (2015)

    MathSciNet  Google Scholar 

  25. Zhang, Y., Mossman, M.E., Busch, T., Engels, P., Zhang, C.: Properties of spin-orbit-coupled Bose–Einstein condensates. Front. Phys. 11, 118103 (2016)

    Google Scholar 

  26. Lobanov, V.E., Kartashov, Y.V., Konotop, V.V.: Fundamental, multipole, and half-vortex gap solitons in spin-orbit coupled Bose–Einstein condensates. Phys. Rev. Lett. 112, 180403 (2014)

    Google Scholar 

  27. Sakaguchi, H., Malomed, B.A.: Creation of two-dimensional composite solitons in spin-orbit-coupled self-attractive Bose–Einstein condensates in free space. Phys. Rev. E 89, 032920 (2014)

    Google Scholar 

  28. Sakaguchi, H., Sherman, E.Y., Malomed, B.A.: Vortex solitons in two-dimensional spin-orbit coupled Bose–Einstein condensates: effects of the Rashba–Dresselhaus coupling and Zeeman splitting. Phys. Rev. E 94, 032202 (2016)

    MathSciNet  Google Scholar 

  29. Sakaguchi, H., Malomed, B.A.: One- and two-dimensional gap solitons in spin-orbit-coupled systems with Zeeman splitting. Phys. Rev. A 97, 013607 (2018)

    Google Scholar 

  30. Malomed, B.A.: Creating solitons by means of spin-orbit coupling. Europhys. Lett. 122, 36001 (2018)

    Google Scholar 

  31. Chen, G., Liu, Y., Huang, H.: Mixed-mode solitons in quadrupolar BECs with spin-orbit coupling. Commun. Nonlinear Sci. Numer. Simul. 48, 318 (2017)

    MathSciNet  Google Scholar 

  32. Gautam, S., Adhikari, S.K.: Vortex-bright solitons in a spin-orbit-coupled spin-1 condensate. Phys. Rev. A 95, 013608 (2017)

    Google Scholar 

  33. Sakaguchi, H., Malomed, B.A.: Nonlinear management of topological solitons in a spin-orbit-coupled system. Symmetry 11, 388 (2019)

    MATH  Google Scholar 

  34. Zhang, Y., Zhou, Z., Malomed, B.A., Pu, H.: Stable solitons in three-dimensional free space without the ground state: self-trapped Bose–Einstein condensates with spin-orbit coupling. Phys. Rev. Lett. 115, 253902 (2015)

    Google Scholar 

  35. Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B 7, R53 (2005)

    Google Scholar 

  36. Bergé, L.: Wave collapse in physics: principles and applications to light and plasma waves. Phys. Rep. 303, 259 (1998)

    MathSciNet  Google Scholar 

  37. Torruellas, W.E., Wang, Z., Hagan, D.J., VanStryland, E.W., Stegeman, G.I., Torner, L., Menyuk, C.R.: Observation of two-dimensional spatial solitary waves in a quadratic medium. Phys. Rev. Lett. 74, 5036 (1995)

    Google Scholar 

  38. Liu, X., Beckwitt, K., Wise, F.: Two-dimensional optical spatiotemporal solitons in quadratic media. Phys. Rev. E 62, 1328 (2000)

    Google Scholar 

  39. Segev, M., Valley, G.C., Crosignani, B., DiPorto, P., Yariv, A.: Steady-state spatial screening solitons in photorefractive materials with external applied field. Phys. Rev. Lett. 73, 3211 (1994)

    Google Scholar 

  40. Peccianti, M., Brzdakiewicz, K.A., Assanto, G.: Nonlocal spatial soliton interactions in nematic liquid crystals. Opt. Lett. 27, 1460 (2002)

    Google Scholar 

  41. Pedri, P., Santos, L.: Two-dimensional bright solitons in dipolar Bose–Einstein condensates. Phys. Rev. Lett. 95, 200404 (2005)

    Google Scholar 

  42. Tikhonenkov, I., Malomed, B.A., Vardi, A.: Anisotropic solitons in dipolar Bose–Einstein condensates. Phys. Rev. Lett. 100, 090406 (2008)

    Google Scholar 

  43. Huang, J., Jiang, X., Chen, H., Fan, Z., Pang, W., Li, Y.: Quadrupolar matter-wave soliton in two-dimensional free space. Front. Phys. 10, 100507 (2015)

    Google Scholar 

  44. Maucher, F., Henkel, N., Saffman, M., Królikowski, W., Skupin, S., Pohl, T.: Rydberg-induced solitons: three-dimensional self-trapping of matter waves. Phys. Rev. Lett. 106, 170401 (2011)

    Google Scholar 

  45. Mihalache, D., Mazilu, D., Crasovan, L.-C., Malomed, B.A., Lederer, F.: Three-dimensional spinning solitons in the cubic-quintic nonlinear medium. Phys. Rev. E 61, 7142 (2001)

    Google Scholar 

  46. Konar, S., Mishra, M., Jana, S.: Nonlinear evolution of cosh-Gaussian laser beams and generation of flat top spatial solitons in cubic quintic nonlinear media. Phys. Lett. A 362, 505 (2007)

    Google Scholar 

  47. Falcão-Filho, E.L., Araújo, C.B.de, Boudebs, G., Leblond, H., and Skarka, V.: Robust Two-Dimensional Spatial Solitons in Liquid Carbon Disulfide, Phys. Rev. Lett. 110, 013901 (2013)

  48. Wang, Y.Y., Chen, L., Dai, C.Q., Zheng, J., Fan, Y.: Exact vector multipole and vortex solitons in the media with spatially modulated cubic-quintic nonlinearity. Nonlinear Dyn. 90, 1269 (2017)

    MathSciNet  Google Scholar 

  49. Dai, C.Q., Chen, R.P., Wang, Y.Y., Fan, Y.: Dynamics of light bullets in inhomogeneous cubic-quintic-septimal nonlinear media with PT-symmetric potentials. Nonlinear Dyn. 87, 1675–1683 (2017)

    Google Scholar 

  50. Chen, Y., Zheng, L., Xu, F.: Spatiotemporal vector and scalar solitons of the coupled nonlinear Schröinger equation with spatially modulated cubic-quintic-septimal nonlinearities. Nonlinear Dyn. 93, 2379–2388 (2018)

    Google Scholar 

  51. Li, J., Zhu, Y., Han, J., Qin, W., Dai, C., Wang, S.: Scalar and vector multipole and vortex solitons in the spatially modulated cubic-quintic nonlinear media. Nonlinear Dyn. 91, 757–765 (2018)

    Google Scholar 

  52. Petrov, D.S.: Quantum mechanical stabilization of a collapsing Bose–Bose mixture. Phys. Rev. Lett. 115, 155302 (2015)

    Google Scholar 

  53. Petrov, D.S., Astrakharchik, G.E.: Ultradilute low-dimensional liquids. Phys. Rev. Lett. 117, 100401 (2016)

    Google Scholar 

  54. Cabrera, C.R., Tanzi, L., Sanz, J., Naylor, B., Thomas, P., Cheiney, P., Tarruell, L.: Quantum liquid droplets in a mixture of Bose–Einstein condensates. Science 359, 301 (2018)

    MathSciNet  Google Scholar 

  55. Liu, B., Zhang, H., Zhong, R., Zhang, X., Qin, X., Huang, X., Li, Y., Malomed, B.A.: Symmetry breaking of quantum droplets in a dual-core trap. Phys. Rev. A 99, 053602 (2019)

    Google Scholar 

  56. Kartashov, Y.V., Malomed, B.A., Torner, L.: Metastability of quantum droplet clusters. Phys. Rev. Lett. 122, 193902 (2019)

    Google Scholar 

  57. Zhou, Z., Yu, X., Zou, Y., Zhong, H.: Dynamics of quantum droplets in a one-dimensional optical lattice. Commun. Nonlinear Sci. Numer. Simul. 67, 617 (2019)

    MathSciNet  Google Scholar 

  58. Astrakharchik, G.E., Malomed, B.A.: Dynamics of onedimensional quantum droplets. Phys. Rev. A 98, 013631 (2018)

    Google Scholar 

  59. Schmitt, M., Wenzel, M., Böttcher, F., Ferrier-Barbut, I., Pfau, T.: Self-bound droplets of a dilute magnetic quantum liquid. Nature 539, 259 (2016)

    Google Scholar 

  60. Chomaz, L., Baier, S., Petter, D., Mark, M.J., Wächtler, F., Santos, L., Ferlaino, F.: Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys. Rev. X 6, 041039 (2016)

    Google Scholar 

  61. Baillie, D., Wilson, R.M., Bisset, R.N., Blakie, P.B.: Self-bound dipolar droplet: a localized matter wave in free space. Phys. Rev. A 94, 021602(R) (2016)

    Google Scholar 

  62. Wächtler, F., Santos, L.: Ground-state properties and elementary excitations of quantum droplets in dipolar Bose–Einstein condensates. Phys. Rev. A 94, 043618 (2016)

    Google Scholar 

  63. Ferrier-Barbut, I., Kadau, H., Schmitt, M., Wenze, M., Pfau, T.: Observation of quantum droplets in a strongly dipolar bose gas. Phys. Rev. Lett. 116, 215301 (2016)

    Google Scholar 

  64. Edler, D., Mishra, C., Wächtler, F., Nath, R., Sinha, S., Santos, L.: Quantum fluctuations in quasi-one-dimensional dipolar Bose–Einstein condensates. Phys. Rev. Lett. 119, 050403 (2017)

    Google Scholar 

  65. Lee, T.D., Huang, K.S., Yang, C.N.: Eigenvalues and eigenfunctions of a Bose system of hard spheres and Its low-temperature properties. Phys. Rev. 106, 1135 (1957)

    MathSciNet  MATH  Google Scholar 

  66. Li, Y., Chen, Z., Luo, Z., Huang, C., Tan, H., Pang, W., Malomed, B.A.: Two-dimensional vortex quantum droplets. Phys. Rev. A 98, 063602 (2018)

    Google Scholar 

  67. Zhang, X., Xu, X., Zheng, Y., Chen, Z., Liu, B., Huang, C., Malomed, B.A., Li, Y.: Semidiscrete quantum droplets and vortices. Phys. Rev. Lett. 123, 133901 (2019)

    Google Scholar 

  68. Tengstrand, M.N., Stürmer, P., Karabulut, E.Ö., Reimann, S.M.: Rotating Binary Bose-Einstein Condensates and Vortex Clusters in Quantum Droplets 123, 160405 (2019)

  69. Xu, Y., Zhang, Y., Zhang, C.: Bright solitons in a two-dimensional spin-orbit-coupled dipolar Bose–Einstein condensate. Phys. Rev. A 92, 013633 (2015)

    Google Scholar 

  70. Jiang, X., Fan, Z., Chen, Z., Pang, W., Li, Y., Malomed, B.A.: Two-dimensional solitons in dipolar Bose–Einstein condensates with spin-orbit coupling. Phys. Rev. A 93, 023633 (2016)

    Google Scholar 

  71. Li, Y., Liu, Y., Fan, Z., Pang, W., Fu, S., Malomed, B.A.: Two-dimensional dipolar gap solitons in free space with spin-orbit coupling. Phys. Rev. A 95, 063613 (2017)

    Google Scholar 

  72. Liao, B., Li, S., Huang, C., Luo, Z., Pang, W., Tan, H., Malomed, B.A., Li, Y.: Anisotropic semivortices in dipolar spinor condensates controlled by Zeeman splitting. Phys. Rev. A 96, 043613 (2017)

    Google Scholar 

  73. Liao, B., Ye, Y., Zhuang, J., Huang, C., Deng, H., Pang, W., Liu, B., Li, Y.: Anisotropic solitary semivortices in dipolar spinor condensates controlled by the two-dimensional anisotropic spin-orbit coupling. Chaos Solitons Fractals 116, 424 (2018)

    MathSciNet  Google Scholar 

  74. Liu, S., Liao, B., Kong, J., Chen, P., Lü, J., Li, Y., Huang, C., Li, Y.: Anisotropic semi vortices in spinor dipolar Bose Einstein condensates induced by mixture of Rashba Dresselhaus Coupling. J. Phys. Soc. Jpn. 87, 094005 (2018)

    Google Scholar 

  75. Pang, W., Deng, H., Liu, B., Xu, J., Li, Y.: Two-dimensional vortex solitons in spin-orbit-coupled dipolar Bose–Einstein condensates. Appl. Sci. 8, 1771 (2018)

    Google Scholar 

  76. Cui, X.: Spin-orbit-coupling-induced quantum droplet in ultracold Bose–Fermi mixtures. Phys. Rev. A 98, 023630 (2018)

    Google Scholar 

  77. Li, Y., Luo, Z., Liu, Y., Chen, Z., Huang, C., Fu, S., Tan, H., Malomed, B.A.: Two-dimensional solitons and quantum droplets supported by competing self- and cross-interactions in spin-orbit-coupled condensates. New J. Phys. 19, 113043 (2017)

    Google Scholar 

  78. Sahu, S., Majumder, D.: Collective excitations of two-dimensional Bose–Einstein condensate in liquid phase with spin-orbit coupling, arXiv: 1910.00264

  79. Kartashov, Y.V., Malomed, B.A., Konotop, V.V., Lobanov, V., Torner, L.: Stabilization of solitons in bulk kerr media by dispersive coupling. Opt. Lett. 40, 1045 (2015)

    Google Scholar 

  80. Kartashov, Y.V., Konotop, V.V., Malomed, B.A.: Dark solitons in dual-core waveguides with dispersive coupling. Opt. Lett. 40, 4126 (2015)

    Google Scholar 

  81. Sakaguchi, H., Malomed, B.A.: One- and two-dimensional solitons in PT-symmetric systems emulating spin-orbit coupling. New J. Phys. 18, 105005 (2016)

    Google Scholar 

  82. Huang, H., Lyu, L., Xie, M., Luo, W., Chen, Z., Luo, Z., Huang, C., Fu, S., Li, Y.: Spatiotemporal solitary modes in a twisted cylinder waveguide shell with the self-focusing kerr nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 67, 617 (2019)

    MathSciNet  Google Scholar 

  83. Sakaguchi, H.: New models for multi-dimensional stable vortex solitons. Front. Phys. 14, 12301 (2019)

    Google Scholar 

  84. Huang, C., Ye, Y., Liu, S., He, H., Pang, W., Malomed, B.A., Li, Y.: Excited states of two-dimensional solitons supported by spin-orbit coupling and field-induced dipole-dipole repulsion. Phys. Rev. A 97, 013636 (2018)

    Google Scholar 

  85. Zhong, R., Chen, Z., Huang, C., Luo, Z., Tan, H., Malomed, B.A., Li, Y.: Self-trapping under two-dimensional spin-orbit coupling and spatially growing repulsive nonlinearity. Front. Phys. 13, 130311 (2018)

    Google Scholar 

  86. Kartashov, Y.V., Konotop, V.V., Zezyulin, D.A.: Bose-Einstein condensates with localized spin-orbit coupling: Soliton complexes and spinor dynamics. Phys. Rev. A 90, 063621 (2014)

    Google Scholar 

  87. Li, Y., Zhang, X., Zhong, R., Luo, Z., Liu, B., Huang, C., Pang, W., Malomed, B.A.: Two-dimensional composite solitons in Bose–Einstein condensates with spatially confined spin-orbit coupling. Commun. Nonlinear Sci. Numer. Simul. 73, 481 (2019)

    MathSciNet  Google Scholar 

  88. Ye, Z., Chen, Y., Zheng, Y., Chen, X., Liu, B.: Symmetry breaking of a matter-wave soliton in a double-well potential formed by spatially confined spin-orbit coupling. Chaos Solitons Fractals 130, 109418 (2020)

    MathSciNet  Google Scholar 

  89. Dai, C.Q., Zhou, G.Q., Chen, R.P., Lai, X.J., Zheng, J.: Vector multipole and vortex solitons in two-dimensional Kerr media. Nonlinear Dyn. 88, 2629 (2017)

    MathSciNet  Google Scholar 

  90. Chin, C., Grimm, R., Julienne, P., Tiesinga, E.: Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225 (2010)

    Google Scholar 

  91. Köhler, T., Góral, K., Julienne, P.: Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311 (2006)

    Google Scholar 

  92. Inouye, S., Andrews, M.R., Stenger, J., Miesner, H.-J., Stamper-Kurn, D.M., Ketterle, W.: Observation of Feshbach resonances in a Bose–Einstein condensate. Nature 392, 151 (1998)

    Google Scholar 

  93. Timmermans, E., Tommasini, P., Husseinb, M., Kerman, A.: Feshbach resonances in atomic Bose–Einstein condensates. Phys. Rep. 315, 199 (1999)

    Google Scholar 

  94. Chiofalo, L.M., Succi, S., Tosi, P.M.: Ground state of trapped interacting Bose–Einstein condensates by an explicit imaginary time algorithm. Phys. Rev. E 62, 7438 (2000)

    Google Scholar 

  95. Yang, J., Lakoba, T.I.: Accelerated imaginary-time evolution methods for the computation of solitary waves. Stud. Appl. Math. 120, 265 (2008)

    MathSciNet  MATH  Google Scholar 

  96. Sakaguchi, H., Malomed, B.A.: Solitons in combined linear and nonlinear lattice potentials. Phys. Rev. A 81, 013624 (2010)

    Google Scholar 

  97. Shchesnovich, V.S., Doktorov, E.V.: Perturbation theory for solitons of the Manakov system. Phys. Rev. E 55, 7626 (1997)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by NNSFC (China) through Grant Nos. 11905032, 11874112, and 11575063, the Foundation for Distinguished Young Talents in Higher Education of Guangdong through Grant Nos. 2018KQNCX279 and 2018KQNCX009, and the Special Funds for the Cultivation of Guangdong College Students Scientific and Technological Innovation, No. pdjh2019b0514.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Ethical standards

This research does not involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Xw., Deng, Zg., Xu, Xx. et al. Nonlinear modes in spatially confined spin–orbit-coupled Bose–Einstein condensates with repulsive nonlinearity. Nonlinear Dyn 101, 569–579 (2020). https://doi.org/10.1007/s11071-020-05692-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05692-6

Keywords

Navigation