Skip to main content
Log in

Study of mixed-mode oscillations in a nonlinear cardiovascular system

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Problems related to cardiovascular dynamics and its representation by responses of electric circuit models with a novel estimation method for continuously tracking cardiac output and total peripheral conductance focus the main attention of this paper. The incorporation of nonlinearity in the performed analysis is one of the main features of this study what requires special attention both in modeling and solution procedures. The presented method takes into account intra-beat dynamics of arterial blood pressure and includes an appropriate model of arterial compliance. Inspected intra-beat parameters were taken into account for models of pulsate cardiovascular dynamics. Continuous monitoring of cardiac output, total peripheral conductance, left ventricular ejection fraction, left ventricular end-diastolic volume, and arterial blood pressure create the solid basis for distinguishing between cardiogenic, hypovolemic, and septic shocks. The task of tracking patient cardiovascular dynamics, which is particularly useful in the intensive care unit setting, is realized by applying an effective model with elements mapping appropriate relations existing in real clinical conditions. A lumped-parameter continuous-time electrical circuit model of cardiovascular dynamics is established. The adopted circuit model improves methods for fast manhandle of large quantities of clinical data and extracting from them kinetic parameters that can more importantly influence on the improvement of the dynamics of studied cardiovascular illness processes. When two or three (out of five) parameters of the circuit change simultaneously, various relaxation, mixed-mode, chaotic, and unstable oscillations are detected. Results of performed computer simulations of cardiovascular processes with the focus on mixed-mode oscillations as the dynamical switches between small-amplitude oscillations and large-amplitude oscillations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge (2007)

    Google Scholar 

  2. Lu, Z., Mukkamala, R.: Continuous cardiac output monitoring in humans by invasive and non invasive peripheral blood pressure waveform analysis. J. Appl. Physiol. 101(2), 598–608 (2006)

    Article  Google Scholar 

  3. Mukkamala, R., Reisner, A., Hojman, H., Mark, R., Cohen, R.: Continuous cardiac output monitoring by peripheral blood pressure waveform analysis. IEEE Trans. Biomed. Eng. 53(3), 459–467 (2006)

    Article  Google Scholar 

  4. Heldt, T., Chang, J.L., Chen, J.J.S., Verghese, G.C., Mark, R.G.: Cycle-averaged dynamics of a periodically-driven, closed loop circulation model. Control Eng. Pract. 13(9), 1163–1171 (2005)

    Article  Google Scholar 

  5. Parlikar, T.A., Heldt, T., Verghese, G.C.: Cycle-averaged models of cardiovascular dynamics. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 53(11), 2459–2468 (2006)

    Article  MathSciNet  Google Scholar 

  6. Shibao, C., Grijalva, C.G., Raj, S.R., Biaggioni, I., Griffin, M.R.: Orthostatic hypotension-related hospitalizations in the United States. Am. J. Med. 120, 975–80 (2007)

    Article  Google Scholar 

  7. Fedorowski, A., Stavenow, L., Hedblad, B., Berglund, G., Nilsson, P.M., Melander, O.: Orthostatic hypotension predicts all-cause mortality and coronary events in middle-aged individuals. Eur. Heart J. 31, 85–91 (2010)

    Article  Google Scholar 

  8. Kozlovskaya, I.B., Grigoriev, A.I.: Russian system of countermeasures on board of the International Space Station (ISS): the first results. Acta Astronaut. 55, 233–237 (2004). https://doi.org/10.1016/j.actaastro.2004.05.049

    Article  Google Scholar 

  9. Walchenbach, R., Geiger, E., Thomeer, R.T., Vanneste, J.A.: The value of temporary external lumbar CSF drainage in predicting the outcome of shunting on normal pressure hydrocephalus. J. Neurol. Neurosurg. Psychiatry 72, 503–536 (2002)

    Google Scholar 

  10. Arnold, A.C., Raj, S.R.: Orthostatic hypotension: a practical approach to investigation and management. Can. J. Cardiol. 33, 1725–1728 (2017)

    Article  Google Scholar 

  11. Low, PhA, Tomalia, V.A.: Orthostatic hypotension: mechanisms, causes, management. J Clin Neurol 11(3), 220–226 (2015). https://doi.org/10.3988/jcn.2015.11.3.220

    Article  Google Scholar 

  12. Adamec, I., Junakovic, A., Krbot, M., Habek, M.: Association of autonomic nervous system abnormalities on head-up tilt table test with joint hypermobility. Eur. Neurol. 79(5–6), 319–324 (2018)

    Article  Google Scholar 

  13. Genecand, L., Dupuis-Lozeron, E., Adler, D., Lador, F.: Determination of cardiac output: a game of thrones. Respiration 96(6), 1 (2018)

    Article  Google Scholar 

  14. MacEwen, C., Sutherland, Sh, Pugh, D.J., Tarassenko, L.: Validation of model flow estimates of cardiac output in hemodialysis patients. Ther. Apher. Dial. Off. Peer-Rev. J. Int. Soc. Apher. Jpn. Soc. Apher. Jpn. Soc. Dial. Therapy 22(4), 1 (2018)

    Google Scholar 

  15. Niewiadomski, W., Gasiorowska, A., Krauss, B., Mróz, A., Cybulski, G.: Suppression of heart rate variability after supramaximal exertion. Clin. Physiol. Funct. Imaging 27(5), 309–319 (2007)

    Article  Google Scholar 

  16. Strasz, A., Niewiadomski, W., Skupińska, M., Gąsiorowska, A., Laskowska, D., Leonarcik, R., Cybulski, G.: Systolic time intervals detection and analysis of polyphysiographic signals. In: Jablonski, R., Brezina, T. (eds.) Mechatronics Recent Technological and Scientific Advances. Springer, Berlin (2011)

    Google Scholar 

  17. Rajzer, M., Kawecka-Jaszcz, K.: Arterial compliance in arterial hypertension. From pathophysiology to clinical relevance. Arter. Hypertens. 6(1), 61–73 (2002)

    Google Scholar 

  18. Dimitrakopoulos, E.G.: Nonsmooth analysis of the impact between successive skew bridge-segments. Nonlinear Dyn. 74, 911–928 (2013)

    Article  MathSciNet  Google Scholar 

  19. Heldt, T., Verghese, G.C., Mark, R.G.: Mathematical modeling of physiological systems. In: Batzel, J.J., Bachar, M., Kappel, F. (eds.) Included in Mathematical Modeling and Validation in Physiology: Applications to the Cardiovascular and Respiratory Systems. Springer, Berlin (2013)

    Google Scholar 

  20. Subramaniam, B., Khabbaz, K.R., Heldt, T., Lerner, A.B., Mittleman, M.A., Davis, R.B., Goldberger, A.L., Costa, M.D.: Blood pressure variability: can nonlinear dynamics enhance risk assessment during cardiovascular surgery. J. Cardiothorac. Vasc. Anesth. 28(2), 392–97 (2014)

    Article  Google Scholar 

  21. Trzaska, Z.: Nonsmooth analysis of the pulse pressured infusion fluid flow. Nonlinear Dyn. 78, 525–540 (2014)

    Article  MathSciNet  Google Scholar 

  22. Trzaska, Z.: Dynamical processes in sequential-bipolar pulse sources supplying nonlinear loads. Electr. Rev. 90(3), 147–152

  23. Trzaska, Z.: Properties and applications of memristors—memristor circuits with innovation in electronics. In: Czyż, Z., Maciąg, K. (eds.) Contemporary Problems of Electrical Engineering and Development and Evaluation of Technological Processes, pp. 76–93. Publisher TYGIEL, Lublin (2017)

    Google Scholar 

  24. Lesniak, M.S., Clatterbuck, R.E., Rigamonti, D., Williams, M.A.: Low pressure hydrocephalus and ventriculomegaly: hysteresis, non-linear dynamics, and the benefits of CSF diversion. Br. J. Neurosurg. 16, 555–561 (2002)

    Article  Google Scholar 

  25. Tharp, B.Z., Erdmann, D.B., Matyas, M.L., McNeel, R.L., Moreno, N.P.: The Science of the Heart and Circulation. Baylor College of Medicine, Houston (2009)

    Google Scholar 

  26. Rowell, L.B.: The cardiovascular System. In: Tipton, C.M. (ed.) Exercise Physiology. American Physiological Society, Rockville (2003)

    Google Scholar 

  27. Solinski, M., Gieraltowski, J.: Different Calculations of Mathematical Changes of the Heart Rhythm. Center of Mathematics Applications, Warsaw University of Technology, Warsaw (2015)

    Google Scholar 

  28. Giusti, A., Mainardi, F.: A dynamic viscoelastic analogy for fluid-filled elastic tubes. Meccanica 51(10), 2321–2330 (2016)

    Article  MathSciNet  Google Scholar 

  29. Colombaro, I., Giusti, A., Mainardi, F.: On the propagation of transient waves in a viscoelastic Bessel medium. Z. Angew. Math. Phys. 68(3), 62 (2017)

    Article  MathSciNet  Google Scholar 

  30. Marszalek, W.: Bifurcations and Newtonian properties of Chua’s circuits with memristors. DeVry Univ. J. Sch. Res. 2(2), 13–21 (2015)

    Google Scholar 

  31. Marszalek, W.: Fold points and singularity induced bifurcation in inviscid transonic flow. Phys. Lett. A 376, 2032–2037 (2012)

    Article  Google Scholar 

  32. Podhaisky, H., Marszalek, W.: Bifurcations and synchronization of singularly perturbed oscillators: an application case study. Nonlinear Dyn. 69, 949–959 (2012)

    Article  MathSciNet  Google Scholar 

  33. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponent from a time series. Physica 16D, 285–317 (1985)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank two anonymous reviewers for their helpful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdzislaw Trzaska.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trzaska, Z. Study of mixed-mode oscillations in a nonlinear cardiovascular system. Nonlinear Dyn 100, 2635–2656 (2020). https://doi.org/10.1007/s11071-020-05612-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05612-8

Keywords

Navigation