Skip to main content
Log in

A dynamic viscoelastic analogy for fluid-filled elastic tubes

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper we evaluate the dynamic effects of the fluid viscosity for fluid filled elastic tubes in the framework of a linear uni-axial theory. Because of the linear approximation, the effects on the fluid inside the elastic tube are taken into account according to the Womersley theory for a pulsatile flow in a rigid tube. The evolution equations for the response variables are derived by means of the Laplace transform technique and they all turn out to be the very same integro-differential equation of the convolution type. This equation has the same structure as the one describing uni-axial waves in linear viscoelastic solids characterized by a relaxation modulus or by a creep compliance. In our case, the analogy is connected with a peculiar viscoelastic solid which exhibits creep properties similar to those of a fractional Maxwell model (of order 1 / 2) for short times, and of a standard Maxwell model for long times. The present analysis could find applications in biophysics concerning the propagation of pressure waves within large arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In our analysis we have preferred to express the Womersley parameter \(\alpha\) in terms of the time scale \(\tau\) introduced in Eq. (13).

  2. We recall the definition of the time convolution between two locally integrable functions f(t), g(t):

    $$\begin{aligned} f(t) *g (t) := \int _0 ^t f(\tau ) g(t - \tau ) \, d \tau = \int _0 ^t f (t - \tau ) g (\tau ) \, d \tau , \end{aligned}$$

    so that its Laplace transform reads \(\widetilde{f}(s) \, \widetilde{g}(s)\).

References

  1. Abramowitz M, Stegun IA (1965) Handbook of mathematical functions. Dover, New York

    MATH  Google Scholar 

  2. Barclay DW, Moodie TB, Madan VP (2004) Linear and non-linear pulse propagation in fluid-filled compliant tubes. Meccanica 16:3–9

    Article  MATH  Google Scholar 

  3. Barnard ACL, Hunt WA, Timlake WP, Varley E (1966) A theory of fluid flow in compliant tubes. Biophys J 6:717–724

    Article  Google Scholar 

  4. Buchen PW, Mainardi F (1975) Asymptotic expansions for transient viscoelastic waves. Journal de Mécanique 14:597–608

    MATH  Google Scholar 

  5. Daidzic NE (2014) Application of Womersley model to reconstruct pulsatile flow from Doppler ultrasound measurements. J Fluid Eng 136:041102/1–041102/15

    Article  Google Scholar 

  6. Giusti A, Mainardi F (2014) A linear viscoelastic model for arterial pulse propagation. In: Proceedings of ICMMB-19, pp 168–171

  7. Giusti A, Mainardi F (2016) On infinite series concerning zeros of Bessel functions of the first kind. [arXiv:1601.00563]

  8. Gorenflo R, Kilbas A, Mainardi F, Rogosin S (2014) Mittag-Leffler functions. Related topics and applications. Springer, New York

    Book  MATH  Google Scholar 

  9. Hanyga A (2001) Wave propagation in media with singular memory. Math Comput Model 34:1399–1421

    Article  MathSciNet  MATH  Google Scholar 

  10. Hardy GH, Riesz M (1915) The general theory of Dirichlet series. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  11. He X, Ku DN, Moors JE Jr (1993) Simple calculation of the velocity profiles for pulsatile flow in a blood vessel using Mathematica. Ann Biomed Eng 21:45–49

    Article  Google Scholar 

  12. Hoogstraten HW, Smit GH (1978) A mathematical theory of shock-wave formation in arterial blood flow. Acta Mech 30:145–155

    Article  MathSciNet  MATH  Google Scholar 

  13. Koeller RC (2010) A theory relating creep and relaxation for linear materials with memory. J Appl Mech 77:031008-1–031008-9

    Article  ADS  Google Scholar 

  14. Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity. Imperial College Press, London

    Book  MATH  Google Scholar 

  15. Mainardi F, Buggisch H (1983) On non-linear waves in liquid-filled elastic tubes. In: Nigul U, Engelbrecht J (eds) Nonlinear Deform Waves. Springer, Berlin, pp 87–100

    Chapter  Google Scholar 

  16. Mainardi F, Spada G (2011) Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur Phys J Spec Topics 193:133–160 [http://arxiv.org/abs/1110.3400]

  17. Perdikaris P, Karniadakis GE (2014) Fractional-order viscoelasticity in one-dimensional blood flow models. Ann Biomed Eng 42(5):1012–1023. doi:10.1007/s10439-014-0970-3

    Article  Google Scholar 

  18. Rabotnov YuN (1980) Elements of hereditary solid mechanics. Mir Publishers, Moscow

    MATH  Google Scholar 

  19. Rogosin S, Mainardi F (2014) George William Scott Blair—the pioneer of factional calculus in rheology. Commun Appl Ind Math 6:20. doi:10.1685/journal.caim.481

    MathSciNet  MATH  Google Scholar 

  20. Sneddon IN (1960) On some infinite series involving the zeros of Bessel functions of the first kind. Proc Glasgow Math Assoc 4:144–156

    Article  MathSciNet  MATH  Google Scholar 

  21. Womersley JR (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127:553–563

    Article  Google Scholar 

  22. Womersley JR (1957) An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries. Wright Air Development Center, Technical Report, WADC-TR, pp 56–614

Download references

Acknowledgments

The work of F.M. has been carried out in the framework of the activities of the National Group of Mathematical Physics (GNFM, INdAM) and of the Interdepartmental Center “L. Galvani” for integrated studies of Bioinformatics, Biophysics and Biocomplexity of the University of Bologna. The authors are grateful to the anonymous referees for their remarks and suggestions. In particular, we appreciate the comment of one referee who introduced us to the paper in [20].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Giusti.

Appendix: Mathematical discussions

Appendix: Mathematical discussions

We provide the details for the proof of some statements found in the text.

1.1 Proof of the expressions (24) and (31)

Consider the Laplace Transform of the Relaxation-memory function \(\widetilde{{\varPhi }} (s)\)

$$\begin{aligned} \widetilde{{\varPhi }} (s ) = \frac{2}{\sqrt{s \tau }} \frac{I_1 (\sqrt{s \tau })}{I_0 (\sqrt{s \tau })} \end{aligned}$$
(43)

where we will consider \(\tau = 1\) for sake of simplicity (it can be restored by make the substitution \(s \, \leftrightarrow \, s \tau\)). Then, the Relaxation-memory function is given by

$$\begin{aligned} {\varPhi }(t) = 4 \sum _{n=1} ^\infty \exp \left( -\, \lambda _n ^2 t \right) \end{aligned}$$
(44)

where \(\lambda _n \in {\mathbb {R}}\) are such that \(J_0 (\lambda _n) = 0, \,\, \forall n = 1, 2, 3, \ldots\) and \(t>0\).

Proof

Firstly, consider the power series representation for the Modified Bessel functions of the First Kind:

$$\begin{aligned} \begin{aligned} I_{0} (\sqrt{s})&= 1 + \frac{s}{4} + \frac{s^2}{64} + O(s^3) , \\ I_{1} (\sqrt{s})&= \sqrt{s} \left( \frac{1}{2} + \frac{s}{16} + \frac{s^2}{384} \right) + O(s^{7/2}) , \\ \end{aligned} \end{aligned}$$
(45)

one can eventually deduce that

$$\begin{aligned} \widetilde{{\varPhi }} (s) = \frac{2}{\sqrt{s}} \frac{I_{1} (\sqrt{s})}{I_{0} (\sqrt{s})} = 2 \,\frac{\frac{1}{2} + \frac{s}{16} + \frac{s^2}{384} + \cdots }{1 + \frac{s}{4} + \frac{s^2}{64} + \cdots } \end{aligned}$$
(46)

which means that the function of our concern is regular in \(s=0\) and it does not have any branch cuts. Then we can obtain the required function by means of the Bromwich Integral:

$$\begin{aligned} {\varPhi }(t) = \frac{1}{2 \pi i} \int _{Br} \widetilde{{\varPhi }} (s) \, e{{^{st}}} \, ds . \end{aligned}$$
(47)

In particular, \(\widetilde{{\varPhi }} (s)\) has simple poles such that: \(I_0 (\sqrt{s}) = 0\). Now, if we rename \(\sqrt{s}\) as \(\sqrt{s} = - i \lambda\), then

$$\begin{aligned} I_{0} (\sqrt{s}) = 0 \quad \Longleftrightarrow \quad J_0 (\lambda ) = 0 . \end{aligned}$$

Moreover,

$$\begin{aligned} \sqrt{s} _n = - i \lambda _n \quad \Leftrightarrow \quad s_n = - \lambda ^2 _n, \quad n \in {\mathbb {N}}. \end{aligned}$$
(48)

From the previous statements, we can then conclude that:

$$\begin{aligned} \begin{aligned} {\varPhi }(t)&= \sum _{s_n} \mathcal {R}es \,\left\{ \widetilde{{\varPhi }} (s) \, e^{st} \right\} _{s_n} \\&= \sum _{n=1} ^\infty \mathcal {R}es \,\left\{ \frac{2}{\sqrt{s}} \, \frac{I_1 (\sqrt{s})}{I_0 (\sqrt{s})} \, e^{st} \right\} _{s = - \lambda ^2 _n} . \end{aligned} \end{aligned}$$
(49)

It is quite straightforward that

$$\begin{aligned} \begin{aligned} \mathcal {R}es \,&\left\{ \frac{2}{\sqrt{s}} \frac{I_{1} (\sqrt{s}) e^{st}}{I_{0} (\sqrt{s})} \right\} _{s = s_n} \\&= \lim _{s \rightarrow s_n} (s - s_n) \, \frac{2}{\sqrt{s}} \frac{I_{1} (\sqrt{s}) e^{st}}{I_{0} (\sqrt{s})} \\&= 4 \exp \left( s_n t \right) . \end{aligned} \end{aligned}$$
(50)

Thus,

$$\begin{aligned} {\varPhi }(t) = \sum _{n=1} ^\infty \mathcal {R}es \,\left\{ \widetilde{{\varPhi }} (s) \, e^{st} \right\} _{s = - \lambda ^2 _n} = 4 \sum _{n=1} ^\infty e^{- \lambda ^2 _n \, t} . \end{aligned}$$
(51)

\(\square\)

Let us now consider the Laplace Transform of the Creep-memory function \(\widetilde{{\varPsi }} (s)\)

$$\begin{aligned} \widetilde{{\varPsi }} (s) = \frac{2}{\sqrt{s}} \frac{I_1 (\sqrt{s})}{I_2 (\sqrt{s})} . \end{aligned}$$
(52)

Then \({\varPsi }(t)\) is given by

$$\begin{aligned} {\varPsi }(t) = 8 + 4 \sum _{n=1} ^\infty \exp \left( - \,\mu ^2 _n \, t \right) \end{aligned}$$
(53)

where \(\mu _n\) are such that \(J_2 (\mu _n) = 0\) and \(\mu _n \ne 0\), for \(n \in \mathbb {N}\).

Proof

By means of the same procedure shown before we are able to point out that

$$\begin{aligned} \begin{aligned} {\varPsi }(t)&= \sum _{s_n} \mathcal {R}es \,\left\{ \widetilde{{\varPsi }} (s) \, e^{st} \right\} _{s_n} \\&= \sum _{n = 0} ^\infty \mathcal {R}es \,\left\{ \frac{2}{\sqrt{s}} \, \frac{I_1 (\sqrt{s})}{I_2 (\sqrt{s})} \, e^{st} \right\} _{s = - \mu ^2 _n} \end{aligned} \end{aligned}$$
(54)

with \(\mu _n\) such that \(J_2 (\mu _n) = 0\), \(\mu _n \ne 0\), f or \(n \in \mathbb {N}\) and \(\mu _0 \equiv 0\).

Now, we have to distinguish two cases:

If \(s_n \ne 0\), then

$$\begin{aligned} \mathcal {R}es \,\left\{ \widetilde{{\varPsi }} (s) \, e^{st} \right\} _{s_n} = 4 \, \exp \left( s_n t \right) . \end{aligned}$$
(55)

Otherwise, if \(s_n = \mu _0 = 0\),

$$\begin{aligned} \mathcal {R}es \,\left\{ \widetilde{{\varPsi }} (s) \, e^{st} \right\} _{s_n = 0} = \lim _{s \rightarrow 0} s \, \widetilde{{\varPsi }} (s) \, e^{st} = 8 . \end{aligned}$$
(56)

Thus,

$$\begin{aligned} \begin{aligned} {\varPsi }(t)&= \sum _{n=0} ^\infty \mathcal {R}es \,\left\{ \widetilde{{\varPsi }} (s) \, e^{st} \right\} _{s = - \mu ^2 _n} \\&= 8 + 4 \sum _{n=1} ^\infty \exp \left( - \,\mu ^2 _n \, t \right) . \end{aligned} \end{aligned}$$
(57)

\(\square\)

From the above results we are able to conclude that representation of both memory function \({\varPhi }(t)\) and \({\varPsi }(t)\) are given by Dirichlet series (44) and (53), whose convergence is proved in the following.

1.2 On the convergence of the Dirichlet series (44) and (53)

The series (44) is convergent for \(t>0\).

Proof

Consider a Generalized Dirichlet Series:

$$\begin{aligned} f(z) = \sum _{n=1} ^\infty a_n \, \exp \left( - \,\alpha _n z \right) , \quad z \in {\mathbb {C}}. \end{aligned}$$
(58)

In general, we have that the abscissa of convergence and the abscissa of absolute convergence would be different, i.e. \(\sigma _c \ne \sigma _a\), but they will satisfy the following condition:

$$\begin{aligned} 0 \le \sigma _a - \sigma _c \le d = \limsup _{n \rightarrow \infty } \frac{\ln n}{\alpha _n} . \end{aligned}$$
(59)

If \(d=0\), then

$$\begin{aligned} \sigma \equiv \sigma _c = \sigma _a = \limsup _{n \rightarrow \infty } \frac{\ln \left| a_n \right| }{\alpha _n} . \end{aligned}$$
(60)

In our case \(a_n = 1\) and \(\alpha _n = \lambda ^2 _n \ne 0\). Then, we have to understand the behavior of the coefficients \(\lambda _n\) for \(n \gg 1\), where \(J_0 (\lambda _n) = 0\), \(\forall n \in \mathbb {N}\).

Considering the asymptotic representation

$$\begin{aligned} J_{0} (x) \overset{x \gg 1}{\sim } \sqrt{\frac{2}{\pi x}} \, \cos \left( x - \frac{\pi }{4} \right) \end{aligned}$$
(61)

we get to the following conclusion:

$$\begin{aligned} J_0 (\lambda _n) = 0 , \,\,\, \text{ for } \,\, n \gg 1 \, \Longrightarrow \, \lambda _n \propto n , \,\,\, \text{ for } \,\, n \gg 1 . \end{aligned}$$
(62)

Thus,

$$\begin{aligned} \frac{\ln n}{\alpha _n} = \frac{\ln n}{\lambda ^2 _n} \,\, \overset{n \gg 1}{\sim } \,\, \frac{\ln n}{n^2} \,\, \overset{n \rightarrow \infty }{\longrightarrow } \,\, 0 \end{aligned}$$
(63)

which tells us that \(d=0\). Finally,

$$\begin{aligned} \sigma \equiv \sigma _c = \sigma _a = \limsup _{n \rightarrow \infty } \frac{\ln \left| a_n \right| }{\alpha _n} = 0 \end{aligned}$$
(64)

being \(a_n = 1\).

This result implies that the series (44), with \(a_n = 1\) and \(\alpha _n = \lambda ^2 _n \ne 0\), converges for \(\texttt {Re} \{ z\} = t > 0\). \(\square\)

In a similar way a we can prove that the series (53) is convergent for \(t>0\).

1.3 On the asymptotic representations

Finally, we derive the asymptotic representations for \({\varPhi }(t)\) and \({\varPsi }(t)\) as \(t\rightarrow 0^+\) applying the Tauberian theorems to the corresponding Laplace transforms:

$$\begin{aligned} \widetilde{{\varPhi }} (s ) = \frac{2}{\sqrt{s \tau }} \frac{I_1 (\sqrt{s \tau })}{I_0 (\sqrt{s \tau })} , \quad \widetilde{{\varPsi }} (s ) = \frac{2}{\sqrt{s \tau }} \, \frac{I_1 (\sqrt{s \tau })}{I_2 (\sqrt{s \tau })}. \end{aligned}$$
(65)

Then, in view of the asymptotic representation of the modified Bessel functions as \(z\rightarrow \infty\) with \(|{\mathrm {arg}}(z) | <\pi /2\) and for any \(\nu\)

$$\begin{aligned} I_\nu (z) \sim \frac{1}{\sqrt{2\pi }} z^{-1/2} \exp (z), \end{aligned}$$

see e.g. [1], we conclude that for \(z=\sqrt{s\tau }\rightarrow \infty\) (\(s>0\)) we get

$$\begin{aligned} \widetilde{\varPhi }(s)\sim \frac{2}{\sqrt{s\tau }}, \quad \widetilde{\varPsi }(s)\sim \frac{2}{\sqrt{s\tau }}, \end{aligned}$$

so that

$$\begin{aligned} \begin{aligned} {\varPhi }(t)&\sim \frac{2}{ \sqrt{\pi \tau }} \, t^{-1/2} , \quad t \rightarrow 0^+, \\ {\varPsi }(t)&\sim \frac{2}{ \sqrt{\pi \tau }} \, t^{-1/2} , \quad t \rightarrow 0^+ . \end{aligned} \end{aligned}$$
(66)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giusti, A., Mainardi, F. A dynamic viscoelastic analogy for fluid-filled elastic tubes. Meccanica 51, 2321–2330 (2016). https://doi.org/10.1007/s11012-016-0376-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0376-4

Keywords

Mathematics Subject Classification

Navigation