Skip to main content
Log in

A resonant pressure MEMS sensor based on levitation force excitation detection

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a MEMS resonant pressure sensor through implementing an out-of-plane repulsive (levitation) force to enhance the sensor detection threshold and consequently widen its sensing range. 2D and 3D finite-element simulations are conducted and compared to some available experimental data. The simulated results show an increase in the generated levitation force as outstanding merit owing to the added side upper electrodes. The levitation force is then further increased by lateral spacing optimization in association with the assumed applied voltage, which decreases the overall size (footprint) as well. The dynamical behavior around the static equilibrium is first numerically solved using the so-called shooting technique and then compared with an available online simulation tool: the “Matcont” package. The simulated results prove the capability of the online simulator to capture the dynamic response of the resonant micro-sensor when approaching its respective bifurcation points where the stable and unstable branches collide, when in contrary, the shooting technique failed to get the dynamic responses when passing by these bifurcations. Thanks to the fast converging outcomes of the “Matcont” online simulation equipped with simultaneous stability analysis, a comprehensive analysis of the micro-sensor dynamical response is conducted. Three sensing mechanisms as: measurements of frequency shift, amplitude alternation, and amplitude rise/fall near a bifurcation region are evaluated and characterized. Along with enumerating the strengths of the proposed sensor over the conventional capacitive pressure sensors, the advantage of measuring the amplitude rise/fall near the corresponding bifurcation region comparing to the two other sensing mechanisms is detailed, and its possible failure for performance repeatability is resolved by means of the slow-varying frequency sweep. Unlike the traditional parallel-plate configuration in which only one-side frequency shift is observed, in this proposed design, two-sides frequency shift is detected, and accordingly, the reinitialization is categorized based on that. As compared to the conventional MEMS pressure sensor, this revisited design equipped with the suggested sensing mechanism offers wider tunability and sensing range, resolution power enhancement, and simplification of the signal processing circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ma, W., Ma, C., Wang, W.: Surface micromachined MEMS deformable mirror based on hexagonal parallel-plate electrostatic actuator. In: Journal of Physics: Conference Series, vol. 986. IOP Publishing, p. 012021 (2018)

  2. Xiang, X., Dai, X., Wang, K., Yang, Z., Sun, Y., Ding, G.: A customized nonlinear micro-flexure for extending the stable travel range of MEMS electrostatic actuator. J. Microelectromech. Syst. 28, 199–208 (2019)

    Google Scholar 

  3. Ouakad, H.M., Younis, M.I.: Modeling the structural–thermal–electrical coupling in an electrostatically actuated MEMS switch and its impact on the switch stability. Math. Probl. Eng. 2013, 1–8 (2013)

    Google Scholar 

  4. Jrad, M., Younis, M.I., Najar, F.: Modeling and design of an electrically actuated resonant microswitch. J. Vib. Control 22(2), 559–569 (2016)

    MathSciNet  Google Scholar 

  5. Jia, Y., Yan, J., Soga, K., Seshia, A.A.: Parametric resonance for vibration energy harvesting with design techniques to passively reduce the initiation threshold amplitude. Smart Mater. Struct. 23(6), 065011 (2014)

    Google Scholar 

  6. Madinei, H., Khodaparast, H.H., Adhikari, S., Friswell, M.: Design of MEMS piezoelectric harvesters with electrostatically adjustable resonance frequency. Mech. Syst. Signal Process. 81, 360–374 (2016)

    Google Scholar 

  7. Frangi, A., Guerrieri, A., Carminati, R., Mendicino, G.: Parametric resonance in electrostatically actuated micromirrors. IEEE Trans. Ind. Electron. 64(2), 1544–1551 (2017)

    Google Scholar 

  8. Al-Ghamdi, M., Alneamy, A., Park, S., Li, B., Khater, M., Abdel-Rahman, E., Heppler, G., Yavuz, M.: Nonlinear parameter identification of a resonant electrostatic MEMS actuator. Sensors 17(5), 1121 (2017)

    Google Scholar 

  9. Frangi, A., Laghi, G., Langfelder, G., Minotti, P., Zerbini, S.: Optimization of sensing stators in capacitive MEMS operating at resonance. J. Microelectromech. Syst. 24(4), 1077–1084 (2015)

    Google Scholar 

  10. Finkbeiner, S.: MEMS for automotive and consumer electronics. In: Proceedings of the ESSCIRC (ESSCIRC). IEEE 2013, pp. 9–14 (2013)

  11. Sikarwar, S., Singh, S., Yadav, B.C., et al.: Review on pressure sensors for structural health monitoring. Photonic Sens. 7(4), 294–304 (2017)

    Google Scholar 

  12. Pang, C., Zhao, Z., Zhang, J., Shi, L., Du, L., Fang, Z., Liu, Y.: An advantageous fabrication technology to integrate pressure sensor into multi-sensor for micro weather station. In: 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE, pp. 270–273 (2009)

  13. Yu, Z., Zhao, Y., Sun, L., Tian, B., Jiang, Z.: Incorporation of beams into bossed diaphragm for a high sensitivity and overload micro pressure sensor. Rev. Sci. Instrum. 84(1), 015004 (2013)

    Google Scholar 

  14. Yu, L., Kim, B., Meng, E.: Chronically implanted pressure sensors: challenges and state of the field. Sensors 14(11), 20620–20644 (2014)

    Google Scholar 

  15. Zamanzadeh, M., Rezazadeh, G., Jafarsadeghi-Poornaki, I., Shabani, R.: Static and dynamic stability modeling of a capacitive FGM micro-beam in presence of temperature changes. Appl. Math. Model. 37(10–11), 6964–6978 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Zhang, W.-M., Yan, H., Peng, Z.-K., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuators A 214, 187–218 (2014)

    Google Scholar 

  17. Ghayesh, M.H., Farokhi, H.: Nonlinear behaviour of electrically actuated microplate-based MEMS resonators. Mech. Syst. Signal Process. 109, 220–234 (2018)

    Google Scholar 

  18. Towfighian, S., Seleim, A., Abdel-Rahman, E., Heppler, G.: A large-stroke electrostatic micro-actuator. J. Micromech. Microeng. 21(7), 075023 (2011)

    Google Scholar 

  19. Han, J., Zhang, Q., Wang, W.: Design considerations on large amplitude vibration of a doubly clamped microresonator with two symmetrically located electrodes. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 492–510 (2015)

    Google Scholar 

  20. Alneamy, A., Al-Ghamdi, M., Park, S., Khater, M., Abdel-Rahman, E., Heppler, G.: Dimpled electrostatic MEMS actuators. J. Appl. Phys. 125(2), 024304 (2019)

    Google Scholar 

  21. He, S., Mrad, R.B.: Design, modeling, and demonstration of a mems repulsive-force out-of-plane electrostatic micro actuator. J. Microelectromech. Syst. 17(3), 532–547 (2008)

    Google Scholar 

  22. He, S., Mrad, R.B., Chang, J.: Development of a high-performance microelectrostatic repulsive-force rotation actuator. J. Microelectromech. Syst. 19(3), 561–569 (2010)

    Google Scholar 

  23. He, S., Mrad, R.B., Chong, J.: Repulsive-force out-of-plane large stroke translation micro electrostatic actuator. J. Micromech. Microeng. 21(7), 075002 (2011)

    Google Scholar 

  24. Chong, J., He, S., Mrad, R.B.: Development of a vector display system based on a surface-micromachined micromirror. IEEE Trans. Ind. Electron. 59(12), 4863–4870 (2012)

    Google Scholar 

  25. Fan, C., He, S.: A microelectrostatic repulsive-torque rotation actuator with two-width fingers. J. Micromech. Microeng. 25(9), 095006 (2015)

    Google Scholar 

  26. Fan, C., He, S.: A two-row interdigitating-finger repulsive-torque electrostatic actuator and its application to micromirror vector display. J. Microelectromech. Syst. 24(6), 2049–2061 (2015)

    MathSciNet  Google Scholar 

  27. He, S., Mrad, R.B.: Large-stroke microelectrostatic actuators for vertical translation of micromirrors used in adaptive optics. IEEE Trans. Ind. Electron. 52(4), 974–983 (2005)

    Google Scholar 

  28. Pallay, M., Daeichin, M., Towfighian, S.: Dynamic behavior of an electrostatic mems resonator with repulsive actuation. Nonlinear Dyn. 89(2), 1525–1538 (2017)

    Google Scholar 

  29. Pallay, M., Towfighian, S.: A parametric electrostatic resonator using repulsive force. Sens. Actuators A 277, 134–141 (2018)

    Google Scholar 

  30. Pallay, M., Towfighian, S.: A reliable MEMS switch using electrostatic levitation. Appl. Phys. Lett. 113(21), 213102 (2018)

    Google Scholar 

  31. Pallay, M., Miles, R.N., Towfighian, S.: Merging parallel-plate and levitation actuators to enable linearity and tunability in electrostatic mems. J. Appl. Phys. 126(1), 014501 (2019)

    Google Scholar 

  32. Pallay, M., Miles, R.N., Towfighian, S.: A tunable electrostatic MEMS pressure switch. IEEE Tran. Ind. Electron. (2019). https://doi.org/10.1109/TIE.2019.2956377

  33. Ren, S., Yuan, W., Qiao, D., Deng, J., Sun, X.: A micromachined pressure sensor with integrated resonator operating at atmospheric pressure. Sensors 13(12), 17006–17024 (2013)

    Google Scholar 

  34. Hasan, M.H., Alsaleem, F.M., Ouakad, H.M.: Novel threshold pressure sensors based on nonlinear dynamics of MEMS resonators. J. Micromech. Microeng. 28(6), 065007 (2018)

    Google Scholar 

  35. Kumar, V., Boley, J.W., Yang, Y., Ekowaluyo, H., Miller, J.K., Chiu, G.T.-C., Rhoads, J.F.: Bifurcation-based mass sensing using piezoelectrically-actuated microcantilevers. Appl. Phys. Lett. 98(15), 153510 (2011)

    Google Scholar 

  36. Kumar, V., Yang, Y., Boley, J.W., Chiu, G.T.-C., Rhoads, J.F.: Modeling, analysis, and experimental validation of a bifurcation-based microsensor. J. Microelectromech. Syst. 21(3), 549–558 (2012)

    Google Scholar 

  37. Rao, S.S., Yap, F.F.: Mechanical Vibrations, vol. 4. Prentice Hall, Upper Saddle River (2011)

    Google Scholar 

  38. Zamanzadeh, M., Ouakad, H.M., Azizi, S.: Theoretical and experimental investigations of the primary and parametric resonances in repulsive force based MEMS actuators. Sens. Actuators A Phys. 303, 111635 (2019)

    Google Scholar 

  39. Younis, M.I., Abdel-Rahman, E.M., Nayfeh, A.: A reduced-order model for electrically actuated microbeam-based MEMS. J. Microelectromech. Syst. 12(5), 672–680 (2003)

    Google Scholar 

  40. Ouakad, H.M.: The response of a micro-electro-mechanical system (MEMS) cantilever-paddle gas sensor to mechanical shock loads. J. Vib. Control 21(14), 2739–2754 (2015)

    MathSciNet  Google Scholar 

  41. Ouakad, H.M.: Electrostatic fringing-fields effects on the structural behavior of MEMS shallow arches. Microsyst. Technol. 24(3), 1391–1399 (2018)

    MathSciNet  Google Scholar 

  42. Ouakad, H.M.: Static response and natural frequencies of microbeams actuated by out-of-plane electrostatic fringing-fields. Int. J. Non-Linear Mech. 63, 39–48 (2014)

    Google Scholar 

  43. Mohammad, T.F., Ouakad, H.M.: Static, eigenvalue problem and bifurcation analysis of MEMS arches actuated by electrostatic fringing-fields. Microsyst. Technol. 22(1), 193–206 (2016)

    Google Scholar 

  44. De Pasquale, G., Somà, A.: Dynamic identification of electrostatically actuated MEMS in the frequency domain. Mech. Syst. Signal Process. 24(6), 1621–1633 (2010)

    Google Scholar 

  45. Ozdogan, M., Daeichin, M., Ramini, A., Towfighian, S.: Parametric resonance of a repulsive force MEMS electrostatic mirror. Sens. Actuators A 265, 20–31 (2017)

    Google Scholar 

  46. Zamanzadeh, M., Azizi, S.: Static and dynamic characterization of micro-electro-mechanical system repulsive force actuators. J. Vib. Control (2019). https://doi.org/10.1177/1077546319892131

    Article  Google Scholar 

  47. Shampine, L.F., Kierzenka, J., Reichelt, M.W.: Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. Tutorial notes 2000, pp. 1–27 (2000)

  48. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley, New York (2008)

    MATH  Google Scholar 

  49. Meijer, H.: Matcont tutorial: ODE GUI version (2016)

  50. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics, vol. 20. Springer, Berlin (2011)

    Google Scholar 

  51. Dhooge, A., Govaerts, W., Kuznetsov, Y.A., Mestrom, W., Riet, A., Sautois, B.: MATCONT and CL MATCONT: Continuation Toolboxes in Matlab. Universiteit Gent and Utrecht University, Gent and Utrecht (2006)

    Google Scholar 

  52. Burkardt, J.: The continuation method for algebraic nonlinear equations (2014). https://people.sc.fsu.edu/~jburkardt/presentations/continuation_2014_fsu.pdf

  53. Towfighian, S., He, S., Ben Mrad, R.: A low voltage electrostatic micro actuator for large out-of-plane displacement. In: ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection (2015)

  54. Nguyen, V.-N., Baguet, S., Lamarque, C.-H., Dufour, R.: Bifurcation-based micro-/nanoelectromechanical mass detection. Nonlinear Dyn. 79(1), 647–662 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassen M. Ouakad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} \delta _1= & {} \frac{r_1V_\mathrm{DC}^2}{{\mathcal {K}}_{11}}\sum _{j=1}^{5}j {\mathcal {A}}_j {\bar{x}}^jx_0^{j-1}\int _{0}^{1}\varphi ^{j+1} \hbox {d}x \end{aligned}$$
(12)
$$\begin{aligned} \delta _2= & {} \frac{r_1V_\mathrm{DC}^2}{{\mathcal {K}}_{11}}\sum _{j=2}^{5}\frac{j(j-1)}{2} {\mathcal {A}}_j{\bar{x}}^j x_0^{j-2}\int _{0}^{1}\varphi ^{j+1} \hbox {d}x \end{aligned}$$
(13)
$$\begin{aligned} \delta _3= & {} \frac{r_1V_\mathrm{DC}^2}{{\mathcal {K}}_{11}}\sum _{j=3}^{5}\frac{j(j-1)(j-2))}{6}{\mathcal {A}}_j{\bar{x}}^j x_0^{j-3}\int _{0}^{1}\varphi ^{j+1} \hbox {d}x \nonumber \\\end{aligned}$$
(14)
$$\begin{aligned} F_0= & {} \frac{-2r_1V_\mathrm{DC}V_\mathrm{AC}}{{\mathcal {K}}_{11}}\sum _{j=0}^{5}{\mathcal {A}}_j {\bar{x}}^jx_0^{j}\int _{0}^{1}\varphi ^{j+1} \hbox {d}x \end{aligned}$$
(15)
$$\begin{aligned} f_1= & {} \frac{2r_1V_\mathrm{DC}V_\mathrm{AC}}{{\mathcal {K}}_{11}}\sum _{j=1}^{5}j{\mathcal {A}}_j {\bar{x}}^jx_0^{j-1}\int _{0}^{1}\varphi ^{j+1} \hbox {d}x \end{aligned}$$
(16)
$$\begin{aligned} f_2= & {} \frac{2r_1V_\mathrm{DC}V_\mathrm{AC}}{{\mathcal {K}}_{11}}\sum _{j=2}^{5}\frac{j(j-1)}{2} {\mathcal {A}}_j {\bar{x}}^j{\hat{x}}_0^{j-2}\nonumber \\&\int _{0}^{1}\varphi ^{j+1} \hbox {d}x \end{aligned}$$
(17)
$$\begin{aligned} f_3= & {} \frac{2r_1V_\mathrm{DC}V_\mathrm{AC}}{{\mathcal {K}}_{11}}\sum _{j=3}^{5}\frac{j(j-1)(j-2)}{6} {\mathcal {A}}_j {\bar{x}}^jx_0^{j-3}\nonumber \\&\int _{0}^{1}\varphi ^{j+1} \hbox {d}x \end{aligned}$$
(18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamanzadeh, M., Jafarsadeghi-Pournaki, I. & Ouakad, H.M. A resonant pressure MEMS sensor based on levitation force excitation detection. Nonlinear Dyn 100, 1105–1123 (2020). https://doi.org/10.1007/s11071-020-05579-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05579-6

Keywords

Navigation