Skip to main content
Log in

Analysis of response to thermal noise in electrostatic MEMS bifurcation sensors

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents an alternative approach to stochastic analysis of nonlinear dynamic systems. It exploits this approach to analyze the response of electrostatic MEMS bifurcation sensors to a combination of deterministic excitation, mechanical-thermal noise, and electrical-thermal noise. The analytical approach combines the methods of multiple scales and stochastic averaging of the amplitude, to derive the stochastic Itô differential equations describing the modulations of the sensor amplitude and phase difference in the presence of thermal noise and the Fokker–Planck–Kolmogorov (FPK) equation governing the stationary probability density function (PDF) of the stochastic response. Good agreement is found between the predictions of the derived modulation equations and the original equation of motion. The scope of the FPK equation applicability to the noise excitation levels is examined. The impact of the additive noise, arising from mechanical-thermal and electrical-thermal noise, on the sensor response is found to dominate that of the multiplicative noise, arising from the electrical-thermal noise. PDFs of the response are used to investigate the stochastic switching between the co-existing orbits of the bifurcation sensor under the interaction between the excitation frequency and noise intensity. We found that the stochastic switching is activated when the margins of stability of both orbits become comparable to the size of noise-driven motions. Variations in the mean and variance of the amplitude within the hysteretic region can be exploited as sensitive indicators of the stochastic switching. Finally, our results suggest the possibility of implementing a novel highly sensitivity ‘noise-aware’ bifurcation sensor that exploits the quantitative change in the mean amplitude (or RMS) of the sensor states within the frequency range of stochastic switching to detect mass change or gas concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Urasinska-Wojcik, B., Vincent, T.A., Chowdhury, M.F., Gardner, J.W.: Ultrasensitive WO3 gas sensors for NO2 detection in air and low oxygen environment. Sensor. Actuat. B- Chem. 239, 1051–1059 (2017)

    Article  Google Scholar 

  2. Velanki, S., Ji, H.F.: Detection of feline coronavirus using microcantilever sensors. Meas. Sci. Technol. 17, 2964–2968 (2006)

    Article  Google Scholar 

  3. Park, K., Kim, N., Morisette, D.T., Aluru, N.R., Bashir, R.: Resonant MEMS mass sensors for measurement of microdroplet evaporation. J. Microelectromech. S. 21(3), 702–711 (2012)

    Article  Google Scholar 

  4. De Bonis, S.L., Urgell, C., Yang, W., Samanta, C., Noury, A., Vergara-Cruz, J., Dong, Q., Jin, Y., Bachtold, A.: Ultrasensitive displacement noise measurement of carbon nanotube mechanical resonators. Nano Lett. 18, 5324–5328 (2018)

    Article  Google Scholar 

  5. Moser, J., Eichler, A., Güttinger, J., Dykman, M.I., Bachtold, A.: Nanotube mechanical resonators with quality factors of up to 5 million. Nat. nanotechnol. 9, 1007–1011 (2014)

    Article  Google Scholar 

  6. Ekinci, K.L., Yang, Y.T., Roukes, M.L.: Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys. 95, 2682–2689 (2004)

    Article  Google Scholar 

  7. Ilic, B., Craighead, H.G., Krylov, S., Senaratne, W., Ober, C., Neuzil, P.: Attogram detection using nanoelectromechanical oscillators. J. Appl. Phys. 95, 3694–3703 (2004)

    Article  Google Scholar 

  8. Ekinci, K.L., Huang, X.M.H., Roukes, M.L.: Ultrasensitive nanoelectromechanical mass detection. Appl. Phys. Lett. 84, 4469–4471 (2004)

    Article  Google Scholar 

  9. Dai, M.D., Eom, K., Kim, C.W.: Nanomechanical mass detection using nonlinear oscillations. Appl. Phys. Lett. 95, 203104 (2009)

    Article  Google Scholar 

  10. Younis, M.I., Alsaleem, F.: Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena. J. Comput. Nonlinear Dyn. 4(2), 021010 (2009)

    Article  Google Scholar 

  11. Turner, K.L., Zhang, W.H: Design and analysis of a dynamic MEM chemical sensor. Proceedings of the 2001 American Control Conference. Arlington, 1214–1218 (2001)

  12. Harne, R.L., Wang, K.W.: A bifurcation-based coupled linear-bistable system for microscale mass sensing. J. Sound. Vib. 333, 2241–2252 (2014)

    Article  Google Scholar 

  13. Khater, M.E., Al-Ghamdi, M., Park, S., Stewart, K.M.E., Abdel-Rahman, E.M., Penlidis, A., Nayfeh, A.H., Abdel-Aziz, A.K.S., Basha, M.: Binary MEMS gas sensors. J. Micromech. Microeng. 24, 065007 (2014)

    Article  Google Scholar 

  14. Kumar, V., Yang, Y.S., Boley, J.W., Chiu, G.T.C., Rhoads, J.F.: Modeling, analysis, and experimental validation of a bifurcation-based microsensor. J. Microelectromech. S. 21, 549–558 (2012)

    Article  Google Scholar 

  15. Kumar, V., Boley, J.W., Yang, Y.S., Ekowaluyo, H., Miller, J.K., Chiu, G.T.C., Rhoads, J.F.: Bifurcation-based mass sensing using piezoelectrically-actuated microcantilevers. Appl. Phys. Lett. 98, 153510 (2011)

    Article  Google Scholar 

  16. Li, L.L., Holthoff, E.L., Shaw, L.A., Burgner, C.B., Turner, K.L.: Noise squeezing controlled parametric bifurcation tracking of MIP-coated microbeam MEMS sensor for TNT explosive gas sensing. J. Microelectromech. S. 23, 1228–1236 (2014)

    Article  Google Scholar 

  17. Qiao, Y., Arabi, M., Xu, W., Zhang, H.X., Abdel-Rahman, E.M.: The impact of thermal-noise on bifurcation MEMS sensors. Mech. Syst. Signal Pr. 161, 107941 (2021)

    Article  Google Scholar 

  18. Al-Ghamdi, M.S., Khater, M.E., Stewart, K.M.E., Alneamy, A., Abdel-Rahman, E.M., Penlidis, A.: Dynamic bifurcation MEMS gas sensors. J. Micromech. Microeng. 29, 015005 (2018)

    Article  Google Scholar 

  19. Zhang, W.H., Turner, K.L.: Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor. Sensor. Actuat. A-Phys. 122(1), 23–30 (2005)

    Article  Google Scholar 

  20. Meesala, V.C., Hajj, M.R., Abdel-Rahman, E.: Bifurcation-based MEMS mass sensors. Int. J. Mech. Sci. 180, 105705 (2020)

    Article  Google Scholar 

  21. Venstra, W.J., Westra, H.J.R., Van Der Zant, H.S.J.: Stochastic switching of cantilever motion. Nat. Commun. 4, 1–6 (2013)

    Article  Google Scholar 

  22. Zhang, W.H., Turner, K.L.: Noise analysis in parametric resonance based mass sensing. In: ASME 2004 International Mechanical Engineering Congress and Exposition, pp. 363–367. American Society of Mechanical Engineers Digital Collection, (2004)

  23. Mohd-Yasin, F., Nagel, D.J., Korman, C.E.: Noise in MEMS. Meas. Sci. Technol. 21, 012001 (2009)

    Article  Google Scholar 

  24. Leland, R.P.: Mechanical-thermal noise in MEMS gyroscopes. IEEE Sens. J. 5, 493–500 (2005)

    Article  Google Scholar 

  25. Levinzon, F.A.: Fundamental noise limit of piezoelectric accelerometer. IEEE Sens. J. 4, 108–111 (2004)

    Article  Google Scholar 

  26. Hooge, F.N.: 1/f noise sources. IEEE T. Electron. Dev. 41, 1926–1935 (1994)

    Article  Google Scholar 

  27. Djurić, Z., Jakšić, O., Randjelović, D.: Adsorption–desorption noise in micromechanical resonant structures. Sensor. Actuat. A-Phys. 96, 244–251 (2002)

    Article  Google Scholar 

  28. Caughey, T.K.: Equivalent linearization techniques. J. Acoust. Soc. Am. 35, 1706–1711 (1963)

    Article  MathSciNet  Google Scholar 

  29. Nayfeh, A.H., Serhan, S.J.: Response statistics of non-linear systems to combined deterministic and random excitations. Int. J. Nonlin. Mech. 25, 493–509 (1990)

    Article  Google Scholar 

  30. Rong, H.W., Xu, W., Fang, T.: Principal response of Duffing oscillator to combined deterministic and narrow-band random parametric excitation. J. Sound Vib. 210, 483–515 (1998)

    Article  Google Scholar 

  31. Roberts, J.B., Spanos, P.D.: Stochastic averaging: an approximate method of solving random vibration problems. Int. J. Nonlinear Mech. 21, 111–134 (1986)

    Article  MathSciNet  Google Scholar 

  32. Zhu, W.Q., Lin, Y.K.: Stochastic averaging of energy envelope. J. Eng. Mech. 117, 1890–1905 (1991)

    Article  Google Scholar 

  33. Qiao, Y., Xu, W., Jia, W.T., Liu, W.Y.: Stochastic stability of variable-mass Duffing oscillator with mass disturbance modeled as Gaussian white noise. Nonlinear Dyn. 89, 607–616 (2017)

    Article  MathSciNet  Google Scholar 

  34. Nayfeh, A.H.: Resolving controversies in the application of the method of multiple scales and the generalized method of averaging. Nonlinear Dyn. 40, 61–102 (2005)

    Article  MathSciNet  Google Scholar 

  35. Khater, M.E., Vummidi, K., Abdel-Rahman, E.M., Nayfeh, A.H., Raman, S.: Dynamic actuation methods for capacitive MEMS shunt switches. J. Micromech. Microeng. 21, 0350 (2011)

    Article  Google Scholar 

  36. Hofler, T.J., Garrett, S.L.: Thermal noise in a fiber optic sensor. J. Acoust. Soc. Am. 84, 471–475 (1988)

    Article  Google Scholar 

  37. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (2008)

    MATH  Google Scholar 

  38. Fuller, A.T.: Analysis of nonlinear stochastic systems by means of the Fokker-Planck equation. Int. J. Control 9, 603–655 (1969)

    Article  MathSciNet  Google Scholar 

  39. Stratonovich, R.L.: Topics in the Theory of Random Noise. CRC Press, Boca Raton (1967)

    MATH  Google Scholar 

  40. Cowen, A., Hardy, B., Mahadevan, R., Wilcenski, S.: PolyMUMPs design handbook. Memscap Inc, 13 (2011).

  41. Qiao, Y., Xu, W., Zhang, H.X., Guo, Q., Abdel-Rahman, E.: A Study of Noise Impact on the Stability of Electrostatic MEMS. J. Comput. Nonlin. Dyn. 15(11), 111006 (2020)

    Article  Google Scholar 

  42. Bashkirtseva, I., Ryazanova, T., Ryashko, L.: Stochastic bifurcations caused by multiplicative noise in systems with hard excitement of auto-oscillations. Phys. Rev. E 92, 042908 (2015)

    Article  Google Scholar 

  43. Al-Ghamdi, M., Khater, M., Abdel-Rahman, E., Nepomuceno, E.: Quasi-Static pull-in: an instability in electrostatic actuators. Sci. Rep. 10, 1–8 (2020)

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant Nos. 11872305,11532011) and the Doctoral Innovation Fund of Northwestern Polytechnical University (Grant No. CX201965).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A: Stochastic seculars terms in the third order

White noise excites a wide spectrum of frequencies, while the secular terms only result from specific frequency components. We can write additive noise \(\xi_{1} (T_{0} ){\kern 1pt}\) as the summation of secular and nonsecular components as follows:

$$ \xi_{1} (T_{0} ){\kern 1pt} { = }A_{{\xi_{1} }} \exp (i\omega_{0} T_{0} ) + \overline{A}_{{\xi_{1} }} \exp ( - i\omega_{0} T_{0} ){ + }NST $$

where NST represents terms that do not produce secular terms.

To eliminate the secular terms, the coefficients \(A_{{\xi_{1} }}\) and \(\overline{A}_{{\xi_{1} }}\) should be set equal to zero. Since the conjugation part is represented by “cc”, only \(A_{{\xi_{1} }} { = }\xi_{1} (T_{0} )\exp ( - i\omega_{0} T_{0} )\) appears in Eq. (16) of the manuscript.

For multiplicative noise \(u_{0} \eta_{e} (T_{0} )\), since \(u_{0} = Aexp(i\omega_{0} T_{0} ) + \overline{A}exp( - i\omega_{0} T_{0} )\), per Eq. (14), there are two cases in which \(u_{0} \eta_{e} (T_{0} )\) generates secular terms:

  1. 1.

    When \(\eta_{e} (T_{0} )\) is in the vicinity of \(\omega_{0} { = }0\) (DC component). In this case, only \(u_{0}\) generates secular term. To eliminate it, the coefficient \(A\eta_{e} (T_{0} )\) should be set to zero.

  2. 2.

    When \(\eta_{e} (T_{0} )\) is in the vicinity of \(2\omega_{0}\) (second harmonic). In this case, \(\eta_{e} (T_{0} )\) can be expanded as \(\eta_{e} (T_{0} ){ = }A_{{\eta_{e} }} \exp (i2\omega_{0} T_{0} ) + \overline{A}_{{\eta_{e} }} \exp ( - i2\omega_{0} T_{0} ){ + }NST\). Here, \(u_{0} \eta_{e} (T_{0} )\) will generate secular terms by

    $$ u_{0} \eta_{e} (T_{0} ){ = }\overline{A}A_{{\eta_{e} }} exp(i\omega_{0} T_{0} ){ + }A\overline{A}_{{\eta_{e} }} exp( - i\omega_{0} T_{0} ) + NST $$

The total coefficient in the resulting secular term of \(\exp (i\omega_{0} T_{0} )\) is \(\overline{A}\eta_{e} (T_{0} )e^{{ - 2i\omega_{0} T_{0} }}\).The secular term about \(\exp ( - i\omega_{0} T_{0} )\) is represented by \(cc\).

To sum up, eliminate the seculars terms in the third order yields

$$ \begin{gathered} 2{\text{i}}\omega_{0} (A^{\prime} + \frac{\mu }{2}A) + (3\alpha_{3} - \frac{{10\alpha_{2}^{2} }}{{3\omega_{0}^{2} }})A^{2} \overline{A} - \frac{1}{2}\lambda \exp (i\sigma T_{2} ) - \xi_{1} (T_{0} )e^{{ - i\omega_{0} T_{0} }} \hfill \\ - A\delta \eta_{e} (T_{0} ) - \overline{A}\delta \eta_{e} (T_{0} )e^{{ - 2i\omega_{0} T_{0} }} = 0 \hfill \\ \end{gathered} $$

B: Long-time integration (LTI)

The equations of motion were integrated (utilizing fourth-order Runge–Kutta scheme) for 1000 excitation periods \(T = {{2\pi } \mathord{\left/ {\vphantom {{2\pi } \Omega }} \right. \kern-\nulldelimiterspace} \Omega }\), and the maximum displacement over the last \(200T\) was evaluated as the amplitude.

C: The MCS procedures

In Fig. 5, each simulation consisted of integrating the approximate equation of motion, Eq. (7), for \(20000T\) and collecting the amplitude of the flow over the last \(4000T\) and repeating this procedure 100 times. The PDF was then obtained by partitioning the target region of the amplitude space \(a \in [0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 2\mu {\text{m}}]\) into 200 sample intervals and counting the number of times the flow visits each sampling interval.

In Fig. 6a, for each initial condition, the equation of motion, Eq. (7), was integrated for \(20000T\) and the amplitude of the flow over the last \(4000T\) was collected. The PDF was obtained by counting the number of times the flow for all six sets of initial conditions visited 200 sampling intervals uniformly distributed over the amplitude space \(a \in [0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 2\mu {\text{m}}]\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Y., Wei, W., Arabi, M. et al. Analysis of response to thermal noise in electrostatic MEMS bifurcation sensors. Nonlinear Dyn 107, 33–49 (2022). https://doi.org/10.1007/s11071-021-07002-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07002-0

Keywords

Navigation