Skip to main content
Log in

Finite-time stabilization of nonlinear systems using an event-triggered controller with exponential gains

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the finite-time stabilization for a class of nonlinear systems by proposing a new event-triggered controller. The novelty lies in that, by introducing an exponential term, the control gains are exponential alterable in the interval of two adjacent event instants. Moreover, based on the proposed controller, a specific event-triggered scheme with a new type of error function is also derived to stabilize the concerned system in a finite time. In addition, a positive lower bound of the inter-execution is obtained, such that the Zeno behaviors can be avoided. Finally, illustrative examples are provided to verify that the overall amount of triggered events can be reduced by utilizing the proposed method in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ding, S., Wang, Z., Rong, N., Zhang, H.: Exponential stabilization of memristive neural networks via saturating sampled-data control. IEEE Trans. Cybern. 47(10), 3027–3039 (2017)

    Article  Google Scholar 

  2. Wang, Z., Xie, Y., Lu, J., Li, Y.: Stability and bifurcation of a delayed generalized fractional-order prey-predator model with interspecific competition. Appl. Math. Comput. 347, 360–369 (2019)

    MathSciNet  Google Scholar 

  3. Yang, D., Zong, G., Karimi, H.R.: \(H_\infty \) refined anti-disturbance control of switched LPV systems with application to aero-engine. IEEE Trans. Ind. Electron. https://doi.org/10.1109/TIE.2019.2912780

  4. Rong, N., Wang, Z., Zhang, H.: Finite-time stabilization for discontinuous interconnected delayed systems via interval type-2 TS fuzzy model approach. IEEE Trans. Fuzzy Syst. 27(2), 249–261 (2019)

    Article  Google Scholar 

  5. Zong, G., Wang, R., Zheng, W., Hou, L.: Finite-time \(H_\infty \) control for discrete-time switched nonlinear systems with time delay. Int. J. Robust Nonlinear Control 25(6), 914–936 (2015)

    Article  MathSciNet  Google Scholar 

  6. Wang, Z., Rong, N., Zhang, H.: Finite-time decentralized control of IT2 TS fuzzy interconnected systems with discontinuous interconnections. IEEE Trans. Cybern. https://doi.org/10.1109/TCYB.2018.2848626

    Article  Google Scholar 

  7. Cai, Z., Huang, L.: Finite-time stabilization of delayed memristive neural networks: discontinuous state-feedback and adaptive control approach. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 856–868 (2018)

    Article  MathSciNet  Google Scholar 

  8. Xu, Y., Lu, R., Shi, P., Li, H., Xie, S.: Finite-time distributed state estimation over sensor networks with round-robin protocol and fading channels. IEEE Trans. Cybern. 48(1), 336–345 (2018)

    Article  Google Scholar 

  9. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  Google Scholar 

  10. Bhat, S.P., Bernstein, D.S.: Finite-time stability of homogeneous systems. In: American control conference, proceedings of the 1997, vol. 4, pp. 2513–2514. IEEE (1997)

  11. Forti, M., Nistri, P., Papini, D.: Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain. IEEE Trans. Neural Netw. Learn. Syst. 16(6), 1449–1463 (2005)

    Article  Google Scholar 

  12. Nersesov, S.G., Haddad, W.M.: Finite-time stabilization of nonlinear impulsive dynamical systems. Nonlinear Anal. Hybrid Syst. 2(3), 832–845 (2008)

    Article  MathSciNet  Google Scholar 

  13. Yang, R., Zang, F., Sun, L., Zhou, P., Zhang, B.: Finite-time adaptive robust control of nonlinear time-delay uncertain systems with disturbance. Int. J. Robust Nonlinear Control. https://doi.org/10.1002/rnc.4415

    Article  MathSciNet  Google Scholar 

  14. Zong, G., Ren, H., Hou, L.: Finite-time stability of interconnected impulsive switched systems. IET Control Theory Appl. 10(6), 648–654 (2016)

    Article  MathSciNet  Google Scholar 

  15. Ren, H., Zong, G., Karimi, H.R.: Asynchronous finite-time filtering of networked switched systems and its application: an event-driven method. IEEE Trans. Circuits Syst. I: Regul. Pap. 66(1), 391–402 (2019)

    Article  MathSciNet  Google Scholar 

  16. Ren, H., Zong, G., Li, T.: Event-triggered finite-time control for networked switched linear systems with asynchronous switching. IEEE Trans. Syst. Man Cybern. Syst. 48(11), 1874–1884 (2018)

    Article  Google Scholar 

  17. Zhu, Y., Guan, X., Luo, X., Li, S.: Finite-time consensus of multi-agent system via nonlinear event-triggered control strategy. IET Control Theory Appl. 9(17), 2548–2552 (2015)

    Article  MathSciNet  Google Scholar 

  18. Wang, L., Wang, Z., Wei, G., Alsaadi, F.E.: Finite-time state estimation for recurrent delayed neural networks with component-based event-triggering protocol. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1046–1057 (2018)

    Article  Google Scholar 

  19. Selivanov, A., Fridman, E.: Event-triggered \( H_ {\infty } \) control: a switching approach. IEEE Trans. Autom. Control 61(10), 3221–3226 (2016)

    Article  MathSciNet  Google Scholar 

  20. Guo, Z., Gong, S., Wen, S., Huang, T.: Event-based synchronization control for memristive neural networks with time-varying delay. IEEE Trans. Cybern. https://doi.org/10.1109/TCYB.2018.2839686

    Article  Google Scholar 

  21. Yue, D., Tian, E., Han, Q.L.: A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans. Autom. Control 58(2), 475–481 (2013)

    Article  MathSciNet  Google Scholar 

  22. Ahmed-Ali, T., Fridman, E., Giri, F., Burlion, L., Lamnabhi-Lagarrigue, F.: Using exponential time-varying gains for sampled-data stabilization and estimation. Automatica 67, 244–251 (2016)

    Article  MathSciNet  Google Scholar 

  23. Ding, S., Wang, Z., Zhang, H.: Event-triggered stabilization of neural networks with time-varying switching gains and input saturation. IEEE Trans. Neural Netw. Learn. Syst. 29(10), 5045–5056 (2018)

    Article  MathSciNet  Google Scholar 

  24. Xu, W., Ho, D.W., Li, L., Cao, J.: Event-triggered schemes on leader-following consensus of general linear multiagent systems under different topologies. IEEE Trans. Cybern. 47(1), 212–223 (2017)

    Article  Google Scholar 

  25. Tian, E., Yue, D.: Decentralized control of network-based interconnected systems: a state-dependent triggering method. Int. J. Robust Nonlinear Control 25(8), 1126–1144 (2015)

    Article  MathSciNet  Google Scholar 

  26. Gu, Z., Shi, P., Yue, D.: An adaptive event-triggering scheme for networked interconnected control system with stochastic uncertainty. Int. J. Robust Nonlinear Control 27(2), 236–251 (2017)

    Article  MathSciNet  Google Scholar 

  27. Zhang, H., Cheng, J., Wang, H., Chen, Y., Xiang, H.: Robust finite-time event-triggered \( H_ {\infty } \) boundedness for network-based Markovian jump nonlinear systems. ISA Trans. 63, 32–38 (2016)

    Article  Google Scholar 

  28. Zhang, H., Yue, D., Yin, X., Hu, S., xia Dou, C.: Finite-time distributed event-triggered consensus control for multi-agent systems. Inf. Sci. 339, 132–142 (2016)

    Article  Google Scholar 

  29. Ma, G., Liu, X., Qin, L., Wu, G.: Finite-time event-triggered \( H_ {\infty } \) control for switched systems with time-varying delay. Neurocomputing 207, 828–842 (2016)

    Article  Google Scholar 

  30. Ahmed-Ali, T., Fridman, E., Giri, F., Burlion, L., et al.: Using exponential time-varying gains for sampled-data stabilization and estimation. Automatica 67, 244–251 (2016)

    Article  MathSciNet  Google Scholar 

  31. Ning, B., Jin, J., Zheng, J., Man, Z.: Finite-time and fixed-time leader-following consensus for multi-agent systems with discontinuous inherent dynamics. Int. J. Control 91(6), 1259–1270 (2018)

    Article  MathSciNet  Google Scholar 

  32. Ames, A.D., Sastry, S.: Characterization of Zeno behavior in hybrid systems using homological methods. In: American control conference, 2005. Proceedings of the 2005, vol. 2, pp. 1160–1165. IEEE (2005)

  33. Matsumoto, T., Chua, L., Komuro, M.: The double scroll. IEEE Trans. Circuits Syst. 32(8), 797–818 (1985)

    Article  MathSciNet  Google Scholar 

  34. Zou, L., Wang, Z.D., Zhou, D.H.: Event-based control and filtering of networked systems: a survey. Int. J. Autom. Comput. 14(3), 239–253 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanshan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the National Natural Science Foundation of China under Grants 61433004 and 61627809, LiaoNing Revitalization Talents Program under Grant XLYC1802010, and in part by SAPI Fundamental Research Funds under Grant 2018ZCX22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, N., Wang, Z. Finite-time stabilization of nonlinear systems using an event-triggered controller with exponential gains. Nonlinear Dyn 98, 15–26 (2019). https://doi.org/10.1007/s11071-019-05167-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05167-3

Keywords

Navigation