Skip to main content
Log in

Nonlinear planar modeling of massive taut strings travelled by a force-driven point-mass

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The planar response of horizontal massive taut strings, travelled by a heavy point-mass, either driven by an assigned force, or moving with an assigned law, is studied. A kinematically exact model is derived for the free boundary problem via a variational approach, accounting for the singularity in the slope of the deflected string. Reactive forces exchanged between the point-mass and the string are taken into account via Lagrange multipliers. The exact model is consistently simplified via asymptotic analysis, which leads to condense the horizontal displacement as a passive variable. The dynamic increment of tension, with respect the static one, is neglected in the governing equations, but evaluated a posteriori, as a higher-order quantity in a perturbation perspective. The equations are solved and rearranged in the form of an integral equation coupled with an integro-differential equation, thus extending a procedure already introduced in the literature. Numerical results, showing the importance of the horizontal reactive force on the quality of motion, are discussed, generalizing those relevant to massless strings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Frỳba, L.: Vibration of Solids and Structures Under Moving Loads, vol. 1. Springer, Berlin (2013)

    MATH  Google Scholar 

  2. Bajer, C.I., Dyniewicz, B.: Numerical Analysis of Vibrations of Structures Under Moving Inertial Load, vol. 65. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  3. Smith, C.E.: Motions of a stretched string carrying a moving mass particle. J. Appl. Mech. 31(1), 29–37 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Derendyayev, N.V., Soldatov, I.N.: The motion of a point mass along a vibrating string. J. Appl. Math. Mech. 61(4), 681–684 (1997)

    Article  Google Scholar 

  5. Gavrilov, S.N.: Nonlinear investigation of the possibility to exceed the critical speed by a load on a string. Acta Mech. 154(1–4), 47–60 (2002)

    Article  MATH  Google Scholar 

  6. Gavrilov, S.N.: The effective mass of a point mass moving along a string on a Winkler foundation. J. Appl. Math. Mech. 70(4), 582–589 (2006)

    Article  MathSciNet  Google Scholar 

  7. Bersani, A.M., Della Corte, A., Piccardo, G., Rizzi, N.L.: An explicit solution for the dynamics of a taut string of finite length carrying a traveling mass: the subsonic case. Z. für Angew. Math. Phys. 67(4), 108 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, L., Rega, G.: Modelling and transient planar dynamics of suspended cables with moving mass. Int. J. Solids Struct. 47(20), 2733–2744 (2010)

    Article  MATH  Google Scholar 

  9. Al-Qassab, M., Nair, S., O’leary, J.: Dynamics of an elastic cable carrying a moving mass particle. Nonlinear Dyn. 33(1), 11–32 (2003)

    Article  MATH  Google Scholar 

  10. Rao, G.V.: Linear dynamics of an elastic beam under moving loads. J. Vib. Acoust. 122(3), 281–289 (2000)

    Article  Google Scholar 

  11. Lee, H.P.: Transverse vibration of a Timoshenko beam acted on by an accelerating mass. Appl. Acoust. 47(4), 319–330 (1996)

    Article  Google Scholar 

  12. Stokes, G.G.: Discussion of a differential equation relating to the breaking of railway bridges. Printed at the Pitt Press by John W, Parker (1849)

  13. He, W.: Vertical dynamics of a single-span beam subjected to moving mass-suspended payload system with variable speeds. J. Sound Vib. 418, 36–54 (2018)

    Article  Google Scholar 

  14. Bajer, X.I., Dyniewicz, B., Shillor, M.A.: Gao beam subjected to a moving inertial point load. Math. Mech. Solids 23(3), 461–472 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shadnam, M.R., Mofid, M., Akin, J.E.: On the dynamic response of rectangular plate, with moving mass. Thin-walled Struct. 39(9), 797–806 (2001)

    Article  Google Scholar 

  16. Nikkhoo, A., Hassanabadi, M.E., Azam, S.E., Amiri, J.V.: Vibration of a thin rectangular plate subjected to series of moving inertial loads. Mech. Res. Commun. 55, 105–113 (2014)

    Article  Google Scholar 

  17. Luongo, A., Piccardo, G.: Dynamics of taut strings traveled by train of forces. Contin. Mech. Thermodyn. 28(1–2), 603–616 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ferretti, M., Piccardo, G., Luongo, A.: Weakly nonlinear dynamics of taut strings traveled by a single moving force. Meccanica 52(13), 3087–3099 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ferretti, M., Piccardo, G.: Dynamic modeling of taut strings carrying a traveling mass. Contin. Mech. Thermodyn. 25(2–4), 469–488 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang, B., Tan, C.A., Bergman, L.A.: On the problem of a distributed parameter system carrying a moving oscillator. In: Tzou, H.S., Bergman, L.A. (eds.) Dynamics and Control of Distributed Systems, pp. 69–94. Cambridge University Press (1998)

  21. Cazzani, A., Wagner, N., Ruge, P., Stochino, F.: Continuous transition between traveling mass and traveling oscillator using mixed variables. Int. J. Non-Linear Mech. 80, 82–95 (2016)

    Article  Google Scholar 

  22. Dyniewicz, B., Bajer, C.I.: Paradox of a particle’s trajectory moving on a string. Arch. Appl. Mech. 79(3), 213–223 (2009)

    Article  MATH  Google Scholar 

  23. Dyniewicz, B., Bajer, C.I.: New feature of the solution of a Timoshenko beam carrying the moving mass particle. Arch. Mech. 62(5), 327–341 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Gavrilov, S.N., Eremeyev, V.A., Piccardo, G., Luongo, A.: A revisitation of the paradox of discontinuous trajectory for a mass particle moving on a taut string. Nonlinear Dyn. 86(4), 2245–2260 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Luongo, A., Zulli, D.: Mathematical Models of Beams and Cables. Wiley, Hoboken (2013)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

V.A.E. acknowledges the support of the Government of the Russian Federation (contract No. 14.Y26.31.0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Luongo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Variational derivation of the equations of motion

The Equations of motion (14)–(18) are derived by the stationary condition of the modified Hamilton principle (9), \(\delta \tilde{{\mathcal {H}}}\left[ {\mathbf {r}},{\mathbf {x}},\xi ,{\mathbf {R}}\right] =0\), i.e.,

$$\begin{aligned} \begin{aligned}&\intop _{t_{1}}^{t_{2}}\left[ \delta {\mathcal {K}}_{m}+\delta {\mathcal {K}}_{s}-\delta {\mathcal {U}}_{s}+\delta {\mathcal {W}}-{\mathbf {R}}\cdot \left( \delta {\mathbf {x}}-\delta \hat{{\mathbf {r}}}\right) \right] \,\mathrm {d}t\\&\quad -\intop _{t_{1}}^{t_{2}}\delta {\mathbf {R}}\cdot \left( {\mathbf {x}}-{\mathbf {r}}\left( \xi \left( t\right) ,t\right) \right) \,\mathrm {d}t=0\qquad \forall \left( \delta {\mathbf {r}},\delta {\mathbf {x}},\delta \xi ,\delta {\mathbf {R}}\right) , \end{aligned} \end{aligned}$$
(71)

where the definitions (10) hold for \({\mathcal {K}}_{m},{\mathcal {K}}_{s},{\mathcal {U}}_{s},{\mathcal {W}}\) and (13) for \(\delta \hat{{\mathbf {r}}}\).

The variations of non-integral in space terms are straightforward, namely:

$$\begin{aligned}&\intop _{t_{1}}^{t_{2}}\delta {\mathcal {K}}_{m}dt =\intop _{t_{1}}^{t_{2}}M\,\dot{{\mathbf {x}}}\cdot \delta \dot{{\mathbf {x}}}\,\mathrm {d}t=-\intop _{t_{1}}^{t_{2}}M\,\ddot{{\mathbf {x}}}\cdot \delta {\mathbf {x}}\,\mathrm {d}t, \end{aligned}$$
(72)
$$\begin{aligned}&\delta {\mathcal {W}} ={\mathbf {F}}\cdot \delta {\mathbf {x}}, \end{aligned}$$
(73)

where terms evaluated at \(t_{1},t_{2}\) after integration by parts have been canceled. The variation of the terms which involve integrals on space, instead, is more complicated, since it calls for properly accounting for the presence of a singularity at \(s=\xi \). By breaking the integration interval as:

$$\begin{aligned} \intop _{0}^{\ell }f\left( s\right) \,\mathrm {d}s=\intop _{0}^{\xi }f\,\mathrm {d}s+\intop _{\xi }^{\ell }f\,\mathrm {d}s, \end{aligned}$$
(74)

it follows that:

$$\begin{aligned} \delta \intop _{0}^{\ell }f\left( s\right) \,\mathrm {d}s= & {} \intop _{0}^{\ell }\delta f\,\mathrm {d}s+\left( \intop _{0}^{\xi +\delta \xi }f\,\mathrm {d}s-\intop _{0}^{\xi }f\,\mathrm {d}s\right) \nonumber \\&+\left( \intop _{\xi +\delta \xi }^{\ell }f\,\mathrm {d}s-\intop _{\xi }^{\ell }f\,\mathrm {d}s\right) \nonumber \\= & {} \intop _{0}^{\ell }\delta f\,\mathrm {d}s+\left[ f\left( \xi _{-}\right) -f\left( \xi _{+}\right) \right] \delta \xi \nonumber \\= & {} \intop _{0}^{\ell }\delta f\,\mathrm {d}s-\llbracket f\rrbracket \delta \xi , \end{aligned}$$
(75)

Accordingly:

$$\begin{aligned}&\delta {\mathcal {K}}_{s}=\intop _{0}^{\ell }m\,\dot{{\mathbf {r}}}\cdot \delta \dot{{\mathbf {r}}}\,\mathrm {d}s-\frac{1}{2}m\,\llbracket \dot{{\mathbf {r}}}\cdot \dot{{\mathbf {r}}}\rrbracket \delta \xi , \end{aligned}$$
(76)
$$\begin{aligned}&\delta {\mathcal {U}}_{s}:=\intop _{0}^{\ell }\frac{T}{1+\varepsilon }\,{\mathbf {r}}'\cdot \delta {\mathbf {r}}'\,\mathrm {d}s-\llbracket \phi \rrbracket \delta \xi , \end{aligned}$$
(77)

in which \(\delta \phi =\frac{\partial \phi }{\partial \varepsilon }\,\delta \varepsilon =T\,\delta \varepsilon \) has been exploited, together with \(\delta \varepsilon =\frac{{\mathbf {r}}'\cdot \delta {\mathbf {r}}'}{1+\varepsilon }\), following Eq. (2).

Next step calls for integrating by parts the last two expressions. By noticing that:

$$\begin{aligned} \begin{aligned}&\intop _{0}^{\ell }f\left( s,t\right) {\dot{g}}\left( s,t\right) \,\mathrm {d}s\\&\quad = -\intop _{0}^{\ell }{\dot{f}}\,g\,\mathrm {d}s+\intop _{0}^{\ell }\left( f\,g\right) ^{\bullet }\,\mathrm {d}s\\&\quad = -\intop _{0}^{\ell }{\dot{f}}\,g\,\mathrm {d}s+\frac{\mathrm {d}}{\mathrm {d}t}\left( \intop _{0}^{\ell }f\,g\,\mathrm {d}s\right) +{\dot{\xi }}\llbracket f\,g\rrbracket ,\\&\intop _{0}^{\ell }f\left( s\right) g'\left( s\right) \,\mathrm {d}s\\&\quad = -\intop _{0}^{\ell }f'g\,\mathrm {d}s+\left[ f_{-}g_{-}\right] _{0}^{\xi }+\left[ f_{+}g_{+}\right] _{\xi }^{\ell }\\&\quad = -\intop _{0}^{\ell }f'g\,\mathrm {d}s+\left[ f_{\,}g\right] _{0}^{\ell }-\llbracket f\,g\rrbracket , \end{aligned} \end{aligned}$$
(78)

it follows:

$$\begin{aligned} \intop _{t_{1}}^{t_{2}}\delta {\mathcal {K}}_{s}\,\mathrm {d}t=&-\intop _{t_{1}}^{t_{2}}\intop _{0}^{\ell }m\,\ddot{{\mathbf {r}}}\cdot \delta {{\mathbf {r}}}\,\mathrm {d}s\,\mathrm {d}t+\intop _{t_{1}}^{t_{2}}m\,{\dot{\xi }}\llbracket \dot{{\mathbf {r}}}\cdot \delta {\mathbf {r}}\rrbracket \,\mathrm {d}t \end{aligned}$$
(79)
$$\begin{aligned}&-\intop _{t_{1}}^{t_{2}}\frac{1}{2}m\llbracket \dot{{\mathbf {r}}}\cdot \dot{{\mathbf {r}}}\rrbracket \delta \xi \,\mathrm {d}t, \end{aligned}$$
(80)
(81)

where the arbitrariness of \(t_{1},t_{2}\) and the external boundary conditions were accounted.

The last step concerns the treatment of the discontinuities at \(s=\xi \). By remembering Eq. (13b), it follows:

$$\begin{aligned} \begin{aligned} \llbracket {\mathbf {f}}\left( s\right) \cdot \delta {\mathbf {r}}\rrbracket&={\mathbf {f}}_{+}\cdot \delta {\mathbf {r}}_{+}-{\mathbf {f}}_{-}\cdot \delta {\mathbf {r}}_{-}\\&={\mathbf {f}}_{+}\cdot \left( \delta \hat{{\mathbf {r}}}-{\mathbf {r}}'_{+}\delta \xi \right) -{\mathbf {f}}_{-}\cdot \left( \delta \hat{{\mathbf {r}}}-\delta \xi \,{\mathbf {r}}'_{-}\right) \\&=\llbracket {\mathbf {f}}\rrbracket \cdot \delta \hat{{\mathbf {r}}}-\llbracket {\mathbf {f}}\cdot {\mathbf {r}}'\rrbracket \delta \xi , \end{aligned} \end{aligned}$$
(82)

from which the terms in Eqs. (79) and (81) are rewritten as:

$$\begin{aligned} \llbracket \dot{{\mathbf {r}}}\cdot \delta {\mathbf {r}}\rrbracket&=\llbracket \dot{{\mathbf {r}}}\rrbracket \cdot \delta \hat{{\mathbf {r}}}-\llbracket \dot{{\mathbf {r}}}\cdot {\mathbf {r}}'\rrbracket \delta \xi , \end{aligned}$$
(83)
(84)

The term \(\llbracket \dot{{\mathbf {r}}}\cdot {\mathbf {r}}'\rrbracket \) can be further transformed by using the relationship:

$$\begin{aligned} \llbracket \dot{{\mathbf {r}}}\cdot \dot{{\mathbf {r}}}\rrbracket +2\,{\dot{\xi }}\llbracket \dot{{\mathbf {r}}}\cdot {\mathbf {r}}'\rrbracket +{\dot{\xi }}^{2}\llbracket {{\mathbf {r}}}'\cdot {\mathbf {r}}'\rrbracket =0, \end{aligned}$$
(85)

which is obtained by manipulating as follows Eq. (4):

$$\begin{aligned} \begin{aligned} \dot{{\mathbf {x}}}\cdot \dot{{\mathbf {x}}}&=\left( \dot{{\mathbf {r}}}_{\pm }+{\dot{\xi }}\,{\mathbf {r}}'_{\pm }\right) \cdot \left( \dot{{\mathbf {r}}}_{\pm }+{\dot{\xi }}\,{\mathbf {r}}'_{\pm }\right) \\&=\dot{{\mathbf {r}}}_{\pm }\cdot \dot{{\mathbf {r}}}_{\pm }+2\,{\dot{\xi }}\,\dot{{\mathbf {r}}}_{\pm }\cdot {\mathbf {r}}'_{\pm }+{\dot{\xi }}^{2}\,{\mathbf {r}}'_{\pm }\cdot {\mathbf {r}}'_{\pm }. \end{aligned} \end{aligned}$$
(86)

By collecting all previous results, the variational principle (71) reads:

(87)

from which Eqs. (14)–(18) are finally derived.

Appendix B: Numerical solution of the integro-differential system

To solve the final Eq. (70), a numerical procedure is adopted, in which the trapezoidal rule for the integral and the forward finite differences for the time-derivatives are adopted. The following positions are first introduced for brevity:

$$\begin{aligned} \begin{aligned}&f\left( t\right) :=-\frac{P\,t^{2}}{2\,\mu },\\&{\mathcal {A}}\left( t,\tau \right) :=K\left( \xi \left( t\right) ,t,\tau \right) +\frac{t-\tau }{\mu },\\&{\mathcal {B}}\left( t,\tau \right) :=2\sum _{k=1}^{N_{e}}\cos \left( \omega _{k}\xi \left( t\right) \right) \sin \left( \omega _{k}\xi \left( \tau \right) \right) \\&\quad \sin \left( \omega _{k}\left( t-\tau \right) \right) . \end{aligned} \end{aligned}$$
(88)

The time interval \(\left[ 0,t_{f}\right] \) is divided in \(N_{s}>2\) equispaced time sub-intervals of amplitude \(\Delta t=t_{f}/N_{s}\). The following notation is used:

$$\begin{aligned} \begin{aligned}&t_{i}=i\,\Delta t,&\tau _{j}=j\,\Delta t,&i,j=0,\,1,\,2,\cdots ,N_{s},\\&R_{yi}=R_{y}\left( t_{i}\right) ,&\xi _{i}=\xi \left( t_{i}\right) ,\\&{\mathcal {A}}_{ij}={\mathcal {A}}\left( t_{i},\tau _{j}\right) ,&{\mathcal {B}}_{ij}={\mathcal {B}}\left( t_{i},\tau _{j}\right) ,\\&f_{i}=f\left( t_{i}\right) ,&D_{i}=D_{i}\left( t_{i}\right) \end{aligned} \end{aligned}$$
(89)

The integral Eq. (70a) is approximated as:

$$\begin{aligned}&\left( \frac{1}{2}{\mathcal {A}}_{10}R_{y0}+\frac{1}{2}{\mathcal {A}}_{11}R_{y1}\right) \Delta t=f_{1},\nonumber \\&\left( \frac{1}{2}{\mathcal {A}}_{i0}R_{y0}+\sum _{j=1}^{i-1}{\mathcal {A}}_{ij}R_{yj}+\frac{1}{2}{\mathcal {A}}_{ii}R_{yi}\right) \Delta t=f_{i},\nonumber \\&i=2,\cdots ,N_{s}, \end{aligned}$$
(90)

and the integro-differential Eq. (70b), by accounting for the initial conditions, as:

$$\begin{aligned} \begin{aligned}&\xi _{0}=0,\\&\xi _{1}={\dot{\xi }}_{0}\,\Delta t,\\&\mu \,\frac{\xi _{2}-2\,\xi _{1}+\xi _{0}}{\Delta t^{2}}=D_{0},\\&\mu \,\frac{\xi _{3}-2\,\xi _{2}+\xi _{1}}{\Delta t^{2}}\\&\quad =D_{1}+R_{y1}\,\left( \frac{1}{2}{\mathcal {B}}_{10}R_{y0}+\frac{1}{2}\mathsf {{\mathcal {B}}}_{11}R_{y1}\right) \Delta t,\\&\mu \,\frac{\xi _{i+2}-2\,\xi _{i+1}+\xi _{i}}{\Delta t^{2}}=D_{i}\\&\qquad +R_{yi}\,\left( \frac{1}{2}\mathsf {{\mathcal {B}}}_{i0}R_{y0}+\sum _{j=1}^{i-1}{\mathcal {B}}_{ij}R_{yj}+\frac{1}{2}\mathsf {{\mathcal {B}}}_{ii}R_{yi}\right) \Delta t,\\&\quad \quad i=2,\cdots ,N_{s}. \end{aligned} \end{aligned}$$
(91)

Equations (90) and (91) can be solved in cascade by following the sequence:

$$\begin{aligned}&\xi _{0}= 0,\nonumber \\&\xi _{1}= {\dot{\xi }}_{0}\,\Delta t,\nonumber \\&R_{y0}= \frac{2\,f_{1}}{{\mathcal {A}}_{10}\,\Delta t},\nonumber \\&\xi _{2}= \frac{D_{0}\Delta t^{2}}{\mu }+2\,\xi _{1}-\xi _{0},\nonumber \\&R_{y1}= \frac{f_{2}}{{\mathcal {A}}_{21}\,\Delta t}-\frac{{\mathcal {A}}_{20}}{2{\mathcal {A}}_{21}}R_{y0},\nonumber \\&\xi _{3}= \frac{D_{1}\Delta t^{2}}{\mu }+2\,\xi _{2}-\xi _{1}+\frac{1}{2\mu }{\mathcal {B}}_{10}R_{y0}R_{y1}\Delta t^{3},\nonumber \\&R_{y\left( i-1\right) }= \frac{f_{i}}{{\mathcal {A}}_{i\left( i-1\right) }\,\Delta t}\nonumber \\&\quad -\frac{1}{{\mathcal {A}}_{i\left( i-1\right) }}\left( \frac{1}{2}{\mathcal {A}}_{i0}R_{y0}+\sum _{j=1}^{i-2}{\mathcal {A}}_{ij}R_{yj}\right) ,\nonumber \\&i=3,\cdots ,N_{s},\nonumber \\&\xi _{i+1}= \frac{D_{\left( i-1\right) }\Delta t^{2}}{\mu }+2\,\xi _{i}-\xi _{i-1}\nonumber \\&\quad +\frac{R_{y\left( i-1\right) }}{\mu }\,\left( \frac{1}{2}\mathsf {{\mathcal {B}}}_{\left( i-1\right) 0}R_{y0}+\sum _{j=1}^{i-2}\mathsf {{\mathcal {B}}}_{\left( i-1\right) j}R_{yj}\right) \Delta t^{3},\nonumber \\&i=3,\cdots ,N_{s}, \end{aligned}$$
(92)

in which \({\mathcal {A}}_{ii}={\mathcal {B}}_{ii}=0\) has been accounted for (i.e., \({\mathcal {A}}\left( t,t\right) ={\mathcal {B}}\left( t,t\right) =0\)). In the case of assigned \(\xi \)-motion, the step relevant to the determination of \(\xi _{i}\) is skipped and subsequently utilized for the determination of \(D_{i}\).

Appendix C: Massless string

The equation of motion of the massless string is obtained by neglecting the inertia term in Eq. (51):

$$\begin{aligned}&v''+R_{y}\,\delta \left( s-\xi \right) =0. \end{aligned}$$
(93)

Equation (93) admits the solution:

$$\begin{aligned} v\left( s,t\right) ={\left\{ \begin{array}{ll} R_{y}\,\left( 1-\xi \right) \,s &{} 0\le s\le \xi \\ R_{y}\,\left( 1-s\right) \,\xi &{} \xi \le s\le 1 \end{array}\right. }. \end{aligned}$$
(94)

Substitution of Eq. (94) in Eq (54) yields:

$$\begin{aligned} y=v\left( \xi ,t\right) =R_{y}\,\left( 1-\xi \right) \,\xi , \end{aligned}$$
(95)

from which:

$$\begin{aligned} R_{y}=\frac{y}{\left( 1-\xi \right) \,\xi }. \end{aligned}$$
(96)

From Eq. (94), it follows that:

$$\begin{aligned} \left\langle v'\right\rangle =\frac{1}{2}\left( 1-2\,\xi \right) \,R_{y}. \end{aligned}$$
(97)

By using Eqs. (96) and (97), Eqs. (52) and (53) become:

$$\begin{aligned}&\mu \,\ddot{y}+\frac{y}{\left( 1-\xi \right) \,\xi }=-P, \end{aligned}$$
(98)
$$\begin{aligned}&\mu \,\ddot{\xi }+\frac{\left( 2\,\xi -1\right) y^{2}}{2\left( 1-\xi \right) ^{2}\,\xi ^{2}}=D. \end{aligned}$$
(99)

Equations (98) and (99) govern the problem of the massless string. Once such equations are solved for y and \(\xi \), the vertical reaction and the displacement field of the string are evaluated via Eqs. (96) and (94), then the nondimensional horizontal displacement, the horizontal reaction and the dynamic tension computed through Eqs. (60), (61) and (62), respectively.

It is worth noting that some coefficients of Eqs. (98) and (99) exhibit singularities at \(\xi =0\) or \(\xi =1\). This situation does not occur if the string is hanging on two vertical elastic supports, as proven in [24]. Therefore, the springs regularize the mathematical model. To investigate the role of singularities, a numerical analysis (not shown here) was carried out, comparing results of Eqs. (98), (99) and those derived in [24], when a very small compliance of the springs is taken. The two models were found to be in excellent agreement, except for a very narrow layer close to the ends. Therefore, the simpler model was adopted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferretti, M., Gavrilov, S.N., Eremeyev, V.A. et al. Nonlinear planar modeling of massive taut strings travelled by a force-driven point-mass. Nonlinear Dyn 97, 2201–2218 (2019). https://doi.org/10.1007/s11071-019-05117-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05117-z

Keywords

Navigation