Skip to main content
Log in

Adaptive coordinated control of uncertain free-floating space manipulators with prescribed control performance

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The paper proposes an adaptive coordinated control scheme on free-floating space manipulators at the dynamic level, with kinematic and dynamic uncertainties. The free-floating space manipulator can be controlled to realize the end-effector trajectory tracking task and the spacecraft attitude regulation task simultaneously, based on the carefully designed prescribed performance error transformations and the reaction null space. In face of nonlinearly parametric feature of the uncertain free-floating space manipulators, a novel attractive manifold control method is proposed by introducing the nonlinear filters on dynamics of the free-floating space manipulators. The parameter estimation error terms can converge to zero, independent of persistent excitation conditions. The proposed adaptive coordinated control scheme can guarantee that both the end-effector tracking error and the spacecraft attitude regulation error possess the prescribed control performances, in the presence of the nonlinearly parametric feature and the nonzero linear and angular momenta of the free-floating space manipulators. The simulation results show the effectiveness of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\({\mathbf {E}}_{n}\) :

\((n \times n)\)-dimensional identity matrix

\({\mathcal {L}}_{\infty }\) :

Space on the essentially bounded functions

\({\mathcal {L}}_{p}\) :

Space on the p-order-integrable functions

\(\theta _{b}\) :

Parameters in the angular momentum conservation equation

\(\theta _{d}\) :

Parameters in the dynamic equation of the free-floating space manipulator

\(\theta _{z}\) :

Parameters in the kinematic equation of the free-floating space manipulator

\(A_{0}\) :

Nonzero angular momentum of the free-floating space manipulator

\(C_{bb}\) :

Centrifugal and Coriolis matrix of the base spacecraft

\(C_{bm}\) :

Centrifugal and Coriolis matrix of the base spacecraft and the manipulator

\(C_{mb}\) :

Centrifugal and Coriolis matrix of the manipulator and the base spacecraft

\(C_{mm}\) :

Centrifugal and Coriolis matrix of the manipulator

\(I_{i}\) :

Inertia of the ith link

\(J_{pb}\) :

Jacobian matrix between the spacecraft angular velocity and the end-effector linear velocity

\(J_{pm}\) :

Jacobian matrix between the manipulator joint angular velocity and the end-effector linear velocity

\(J_{qb}\) :

Jacobian matrix between the spacecraft angular velocity and the end-effector angular velocity

\(J_{qm}\) :

Jacobian matrix between the manipulator joint angular velocity and the end-effector angular velocity

\(l_{c,i}\) :

Distance between the ith link centroid and the \((i+1)\)th joint

\(l_{i}\) :

Length of the ith link

\(M_{bb}\) :

Spacecraft inertia matrix

\(M_{bm}\) :

Coupled inertia matrix between the base spacecraft and the mounted manipulator

\(m_{i}\) :

Mass of the ith link

\(M_{mm}\) :

Inertia matrix of the mounted manipulator

\(p_{e}\) :

End-effector position in the inertia frame

\(q_{b}\) :

Base spacecraft attitude in the inertia frame

\(q_{e}\) :

End-effector attitude in the inertia frame

\(q_{m}\) :

Joint angle

\(u_{m}\) :

Joint torque of the manipulator

\(v_{0}\) :

Nonzero linear velocity of the free-floating space manipulator in the inertia frame

\(w_{b}\) :

Base spacecraft angular velocity in the inertia frame

\(w_{m}\) :

Joint angular velocity

\(z_{e}\) :

Base spacecraft pose in the inertia frame

References

  1. Moosavian, S.A.A., Papadopoulos, E.: Free-flying robots in space: an overview of dynamics modeling, planning and control. Robotica 25(5), 537–547 (2007)

    Article  Google Scholar 

  2. Hirzinger, G., Landzettel, K., Brunner, B., et al.: DLR’s robotics technologies for on-orbit servicing. Adv. Robot. 18(2), 139–174 (2004)

    Article  Google Scholar 

  3. Xu, Y.S., Kanade, T.: Space Robotics: Dynamics and Control. Springer, New York (1992)

    Google Scholar 

  4. Papadopoulos, E., Dubowsky, S.: On the nature of control algorithms for free-floating space manipulators. IEEE Trans. Robot. Autom. 7(6), 750–758 (1991)

    Article  Google Scholar 

  5. Cheah, C.C., Liu, C., Slotine, J.J.E.: Adaptive Jacobian tracking control of robots with uncertainties in kinematic, dynamic and actuator models. IEEE Trans. Autom. Control 51(6), 1024–1029 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhang, B., Jia, Y.M., Matsuno, F., Endo, T.: Task-space synchronization of networked mechanical systems with uncertain parameters and communication delays. IEEE Trans. Cybern. 47(8), 2288–2298 (2017)

    Article  Google Scholar 

  7. Duan, P.H., Duan, Z.S., Wang, J.Y.: Task-space fully distributed tracking control of networked uncertain robotic manipulators without velocity measurements. Int. J. Control 92, 1–14 (2017). https://doi.org/10.1080/00207179.2017.1395911

    MathSciNet  MATH  Google Scholar 

  8. Zhao, L.Y., Ji, J.C., Liu, J., Wu, Q.J., Zhou, J.: Tracking task-space synchronization of networked Lagrangian systems with switching topology. Nonlinear Dyn. 83(3), 1673–1685 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ge, M.F., Guan, Z.H., Yang, C., Chen, C.Y., Zheng, D.F., Chi, M.: Task-space coordinated tracking of multiple heterogeneous manipulators via controller-estimator approaches. J. Frankl. Inst. 353(15), 3722–3738 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yao, X.Y., Ding, H.F., Ge, M.F.: Task-space tracking control of multi-robot systems with disturbances and uncertainties rejection capability. Nonlinear Dyn. 92(4), 1649–1664 (2018)

    Article  MATH  Google Scholar 

  11. Flores-Abad, A., Ma, O., Pham, K., Ulrich, S.: A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 68(4), 1–26 (2014)

    Article  Google Scholar 

  12. Vafa, Z., Dubowsky, S.: On the dynamics of space manipulators using the virtual manipulator, with applications to path planning. J. Astronaut. Sci. 38(4), 441–472 (1990)

    Google Scholar 

  13. Nakamura, Y., Mukherjee, R.: Nonholonomic path planning of space robots via a bidirectional approach. IEEE Trans. Robot. Autom. 7(4), 500–514 (1991)

    Article  Google Scholar 

  14. Torres, M.A., Dubowsky, S.: Minimizing spacecraft attitude disturbances in space manipulator systems. J. Guid. Control Dyn. 15(4), 1010–1017 (1992)

    Article  Google Scholar 

  15. Parlaktuna, O., Ozkan, M.: Adaptive control of free-floating space manipulators using dynamically equivalent manipulator model. Robot. Auton. Syst. 46(3), 185–193 (2004)

    Article  Google Scholar 

  16. Moosavian, S.A.A., Papadopoulos, E.: On the kinematics of multiple manipulator space free-flyers and their computation. J. Robot. Syst. 15(4), 207–216 (1998)

    Article  MATH  Google Scholar 

  17. Rybus, T., Seweryn, K., Sasiadek, J.Z.: Control system for free-floating space manipulator based on nonlinear model predictive control (NMPC). J. Intell. Robot. Syst. 85(3–4), 491–509 (2017)

    Article  Google Scholar 

  18. Aghili, F.: Coordination control of a free-flying manipulator and its base attitude to capture and detumble a noncooperative satellite. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2365–2372 (2009)

  19. Wee, L.B., Walker, M.W., McClamroch, N.H.: An articulated-body model for a free-flying robot and its use for adaptive motion control. IEEE Trans. Robot. Autom. 13(2), 264–277 (1997)

    Article  Google Scholar 

  20. Gu, Y.L., Xu, Y.S.: A normal form augmentation approach to adaptive control of space robot systems. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 731–737 (1993)

  21. Parlaktuna, O., Ozkan, M.: Adaptive control of free-floating space robots in Cartesian coordinates. Adv. Robot. 18(9), 943–959 (2004)

    Article  Google Scholar 

  22. Wang, H.L., Xie, Y.C.: Passivity based adaptive Jacobian tracking for free-floating space manipulators without using spacecraft acceleration. Automatica 45(6), 1510–1517 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Abiko, S., Hirzinger, G.: Adaptive control for a torque controlled free-floating space robot with kinematic and dynamic model uncertainty. In: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2359–2364 (2009)

  24. Abiko, S., Hirzinger, G.: An adaptive control for a free-floating space robot by using inverted chain approach. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2236–2241 (2007)

  25. Sanner, R.M., Vance, E.E.: Adaptive control of free-floating space robots using “neural” networks. In: Proceedings of the American Control Conference, pp. 2790–2794 (1995)

  26. Taveira, F.P.A., Siqueira, A.A.G., Terra, M.H.: Adaptive nonlinear H\(\infty \) controllers applied to a free-floating space manipulator. In: Proceedings of the 2006 IEEE International Conference on Control Applications, pp. 1476–1481 (2006)

  27. Seweryn, K., Banaszkiewicz, M.: Optimization of the trajectory of a general free-flying manipulator during the rendezvous maneuver. In: Proceedings of the AIAA Guidance, Navigation and Control Conference, p. 7273 (2008)

  28. Vladimmir, A.C.: Spacecraft Attitude Dynamics and Control. Malabar Krieger Publishing Company, Florida (1991)

    Google Scholar 

  29. Kane, T.R., Likins, P.W., Levinson, D.A.: Spacecraft Dynamics. McGraw-Hill Book Coporation, New York (1983)

    Book  Google Scholar 

  30. Nakanishi, H., Yoshida, K.: Impedance control for free-flying space robots-basic equations and applications. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3137–3142 (2006)

  31. Giordano, A.M., Garofalo, G., De Stefano, M., Ott, C., Albu-Schaffer, A.: Dynamics and control of a free-floating space robot in presence of nonzero linear and angular momenta. In: Proceedings of IEEE 55th Conference on Decision and Control (CDC), pp. 7527–7534 (2016)

  32. Ran, X., Peng, S., Yushan, Z.: Zero reaction coordinated motion planning for free-floating space manipulators. In: Proceedings of Chinese Control Conference (CCC), pp. 5830–5834 (2015)

  33. Nenchev, D.N., Yoshida, K., Vichitkulsawat, P., Uchiyama, M.: Reaction null-space control of flexible structure mounted manipulator systems. IEEE Trans. Robot. Autom. 15(6), 1011–1023 (1999)

    Article  Google Scholar 

  34. James, F., Shah, S.V., Singh, A.K., Krishna, K.M., Misra, A.K.: Reactionless maneuvering of a space robot in precapture phase. J. Guid. Control Dyn. 39(10), 2419–2425 (2016)

    Article  Google Scholar 

  35. Nguyen-Huynh, T.C., Sharf, I.: Adaptive reactionless motion and parameter identification in postcapture of space debris. J. Guid. Control Dyn. 36(2), 404–414 (2013)

    Article  Google Scholar 

  36. Xu, S.F., Wang, H.L., Zhang, D.Z., Yang, B.H.: Adaptive zero reaction motion control for free-floating space manipulators. IEEE Trans. Aerosp. Electron. Syst. 52(3), 1067–1076 (2016)

    Article  Google Scholar 

  37. Yang, Y.N., Hua, C.C., Guan, X.P.: Synchronization control for bilateral teleoperation system with prescribed performance under asymmetric time delay. Nonlinear Dyn. 81(1–2), 481–493 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sun, D., Naghdy, F., Du, H.P.: Time domain passivity control of time-delayed bilateral telerobotics with prescribed performance. Nonlinear Dyn. 87(2), 1253–1270 (2017)

    Article  MATH  Google Scholar 

  39. Yang, Y.N., Ge, C., Wang, H., Li, X.Y., Hua, C.C.: Adaptive neural network based prescribed performance control for teleoperation system under input saturation. J. Frankl. Inst. 352(5), 1850–1866 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Bechlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53(9), 2090–2099 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Bechlioulis, C.P., Rovithakis, G.A.: Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems. Automatica 45(2), 532–538 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yang, C.G., Jiang, Y.M., He, W., Na, J., Li, Z.J., Xu, B.: Adaptive parameter estimation and control design for robot manipulators with finite-time convergence. IEEE Trans. Ind. Electron. 65(10), 8112–8123 (2018)

    Article  Google Scholar 

  43. Han, S.I., Lee, J.M.: Improved prescribed performance constraint control for a strict feedback non-linear dynamic system. IET Control Theory Appl. 7(14), 1818–1827 (2013)

    Article  MathSciNet  Google Scholar 

  44. Zhang, J.X., Yang, G.H.: Fault-tolerant leader–follower formation control of marine surface vessels with unknown dynamics and actuator faults. Int. J. Robust Nonlinear Control 28(14), 4188–4208 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, S.B., Yu, H.S., Yu, J.P., Na, J., Ren, X.M.: Neural-network-based adaptive funnel control for servo mechanisms with unknown dead-zone. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2018.2875134

    Google Scholar 

  46. Wang, S.B., Na, J., Ren, X.M., Yu, H.S., Yu, J.P.: Unknown input observer-based robust adaptive funnel motion control for nonlinear servomechanisms. Int. J. Robust Nonlinear Control 28(18), 6163–6179 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Na, J., Chen, Q., Ren, X.M., Guo, Y.: Adaptive prescribed performance motion control of servo mechanisms with friction compensation. IEEE Trans. Ind. Electron. 61(1), 486–494 (2014)

    Article  Google Scholar 

  48. Na, J., Huang, Y.B., Wu, X., Gao, G.B., Herrmann, G., Jiang, J.Z.: Active adaptive estimation and control for vehicle suspensions with prescribed performance. IEEE Trans. Control Syst. Technol. 26(6), 2063–2077 (2017)

    Article  Google Scholar 

  49. Tang, X.Q., Chen, Q., Nan, Y., Na, J.: Backstepping funnel control for prescribed performance of robotic manipulators with unknown dead zone. In: Proceedings of the 27th Chinese Control and Decision Conference (CCDC), pp. 1508–1513 (2015)

  50. Xie, X.L., Hou, Z.G., Cheng, L., Ji, C., Tan, M., Yu, H.: Adaptive neural network tracking control of robot manipulators with prescribed performance. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 225(6), 790–797 (2011)

    Article  Google Scholar 

  51. Karayiannidis, Y., Doulgeri, Z.: Model-free robot joint position regulation and tracking with prescribed performance guarantees. Robot. Auton. Syst. 60(2), 214–226 (2012)

    Article  Google Scholar 

  52. Zhao, K., Song, Y.D., Ma, T.D., He, L.: Prescribed performance control of uncertain Euler–Lagrange systems subject to full-state constraints. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3478–3489 (2018)

    Article  MathSciNet  Google Scholar 

  53. Wang, M., Yang, A.: Dynamic learning from adaptive neural control of robot manipulators with prescribed performance. IEEE Trans. Syst. Man Cybernet. Syst. 47(8), 2244–2255 (2017)

    Article  MathSciNet  Google Scholar 

  54. Cao, Y., Song, Y.D.: Adaptive PID-like fault-tolerant control for robot manipulators with given performance specifications. Int. J. Control (2018). https://doi.org/10.1080/00207179.2018.1468928

    Google Scholar 

  55. Yang, C.G., Jiang, Y.M., Li, Z.J., He, W., Su, C.Y.: Neural control of bimanual robots with guaranteed global stability and motion precision. IEEE Trans. Ind. Inform. 13(3), 1162–1171 (2017)

    Article  Google Scholar 

  56. Bechlioulis, C.P., Doulgeri, Z., Rovithakis, G.A.: Guaranteeing prescribed performance and contact maintenance via an approximation free robot force/position controller. Automatica 48(2), 360–365 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Xu, Y.S., Shum, H.Y., Kanade, T., Lee, J.J.: Parameterization and adaptive control of space robot systems. IEEE Trans. Aerosp. Electron. Syst. 30(2), 435–451 (1994)

    Article  Google Scholar 

  58. Zhou, Z.G., Zhang, Y.A., Zhou, D.: Robust prescribed performance tracking control for free-floating space manipulators with kinematic and dynamic uncertainty. Aerosp. Sci. Technol. 71(12), 568–579 (2017)

    Article  Google Scholar 

  59. Abiko, S., Yoshida, K.: Adaptive reaction control for space robotic applications with dynamic model uncertainty. Adv. Robot. 24(8–9), 1099–1126 (2010)

    Article  Google Scholar 

  60. Lozano, R., Brogliato, B., Egeland, O., Maschke, B.: Dissipative Systems Analysis and Control: Theory and Applications. Springer, Berlin (2013)

    MATH  Google Scholar 

  61. Zhang, J.X., Yang, G.H.: Prescribed performance fault-tolerant control of uncertain nonlinear systems with unknown control directions. IEEE Trans. Autom. Control 62(12), 6529–6535 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  62. Seo, D.E., Akella, M.R.: High-performance spacecraft adaptive attitude-tracking control through attracting-manifold design. J. Guid. Control Dyn. 31(4), 884–891 (2008)

    Article  Google Scholar 

  63. Seo, D.E., Akella, M.R.: Non-certainty equivalent adaptive control for robot manipulator systems. Syst. Control Lett. 58(4), 304–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  64. Lee, K.W., Singh, S.N.: Noncertainty-equivalent adaptive wing-rock control via Chebyshev neural network. J. Guid. Control Dyn. 37(1), 123–133 (2013)

    Article  Google Scholar 

  65. Sun, L., Zheng, Z.W.: Nonlinear adaptive trajectory tracking control for a stratospheric airship with parametric uncertainty. Nonlinear Dyn. 82(3), 1419–1430 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  66. Sui, S., Tong, S.C., Li, Y.M.: Observer-based fuzzy adaptive prescribed performance tracking control for nonlinear stochastic systems with input saturation. Neurocomputing 158(3), 100–108 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC (61327807, 61521091, 61520106010, 61134005) and the National Basic Research Program of China (973 Program: 2012CB821200, 2012CB821201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingmin Jia.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists in the submission of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Jia, Y. Adaptive coordinated control of uncertain free-floating space manipulators with prescribed control performance. Nonlinear Dyn 97, 1541–1566 (2019). https://doi.org/10.1007/s11071-019-05071-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05071-w

Keywords

Navigation