Skip to main content
Log in

Control System for Free-Floating Space Manipulator Based on Nonlinear Model Predictive Control (NMPC)

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Manipulator mounted on an unmanned satellite could be used for performing orbital capture maneuver in order to repair satellites or remove space debris from orbit. Use of manipulators for such purposes presents unique challenges, as high level of autonomy is required and the motion of the manipulator influences the position and orientation of the manipulator-equipped satellite. This paper presents a new control system that consists of two modules: trajectory planning module (based on trajectory optimization algorithm) and Model Predictive Controller. Both modules take into account the free-floating nature of the satellite-manipulator system. Proposed control system was tested in numerical simulations performed for a simplified planar case. In the first set of simulations Nonlinear Model Predictive Control (NMPC) was used to ensure realization of a square reference end-effector trajectory, while in the second set control system was used for optimizing and then ensuring realization of the trajectory that leads to grasping of the rotating target satellite. Simulations were performed with disturbances and with the assumed non-perfect knowledge of parameters of the satellite-manipulator system. Results obtained with NMPC are better than results obtained with the controller based on the Dynamic Jacobian inverse and with the Modified Simple Adaptive Control (MSAC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jenkins, D.R.: Space Shuttle: The History of the National Space Transportation System, The First 100 Missions, 3rd edn (2001)

  2. Stieber, M.E., Hunter, D.G., Abramovici, A.: Overview of the mobile servicing system for the international space station. In: Proceedings of the 5th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS’1999), Noordwijk (1999)

  3. Hirzinger, G., Brunner, B., Dietrich, J., Heindl, J.: Sensor-based space robotics – ROTEX and its telerobotic features. IEEE Trans. Robot. Autom. 9(5), 649–663 (1993)

    Article  Google Scholar 

  4. Oda, M.: Summary of NASDA’s ETS-VII robot satellite mission. J. Robot. Mechatron. 12(4) (2000)

  5. Ogilvie, A., Allport, J., Hannah, M., Lymer, J.: Autonomous satellite servicing using the orbital express demonstration manipulator system. In: Proceedings of the 9th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS’2008), Los Angeles (2008)

  6. Reintsema, D., Thaeterm, J., Rathke, A., Naumann, W., Rank, P., Sommer, J.: DEOS – The German robotics approach to secure and de-orbit malfunctioned satellites from low earth orbits, Sapporo (2010)

  7. Olmos, D.O., Peters, T.V., Naude, J., Chitu, C., Seweryn, K., Barcinski, T.: AnDROiD, small mission for active debris removal. In: Proceedings of the 4S Symposium, Porto Petro (2014)

  8. Liou, J.-C., Johnson, N.L., Hill, N.M.: Controlling the growth of future LEO debris populations with active debris removal. Acta Astronaut. 166(5-6), 648–653 (2010)

    Article  Google Scholar 

  9. Hausmann, G., Wieser, M., Haarmann, R., Brito, A., Meyer, J.C., et al.: E.Deorbit mission: OHB debris removal concepts. In: Proceeding of the 13th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA’2015), Noordwijk (2015)

  10. Seweryn, K., Grassmann, K., Rutkowski, K., Rybus, T., Wawrzaszek, R.: Design and development of two manipulators as a key element of a space robot testing facility. Arch. Mech. Eng. 62 (3), 377–394 (2015)

    Article  Google Scholar 

  11. Rybus, T., Barcinski, T., Lisowski, J., Nicolau-Kukliński, J., Seweryn, K., et al.: New planar air-bearing microgravity simulator for verification of space robotics numerical simulations and control algorithms. In: Proceedings of the 12th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA 2013). ESTEC, Noordwijk (2013)

  12. Dubowsky, S., Papadopoulos, E.: The kinematics, dynamics, and control of free-flying and free-floating space robotic systems. IEEE Trans. Robot. Autom. 9(5), 531–543 (1993)

    Article  Google Scholar 

  13. Longman, R.W., Lindberg, R.E., Zadd, M.F.: Satellite-mounted robot manipulators: new kinematics and reaction moment compensation. Int. J. Robot. Res. 6(3) (1987)

  14. Umetani, Y., Yoshida, K.: Resolved motion rate control of space manipulators with generalized jacobian matrix. IEEE Trans. Robot. Autom. 5(3), 303–314 (1989)

    Article  Google Scholar 

  15. Strauss, A.M., Parlaktuna, O., Cook, G.E.: Jacobian control for space manipulator. Robot. Auton. Syst. 11(1), 35–44 (1993)

    Article  Google Scholar 

  16. Seweryn, K., Banaszkiewicz, M.: Optimization of the trajectory of a general free-flying manipulator during the rendezvous maneuver. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit (AIAA-GNC’2008), Honolulu (2008)

  17. Vafa, Z., Dubowsky, S.: The kinematic and dynamics of space manipulator: The virtual manipulator approach. Int. J. Robot. Res. 9(4) (1989)

  18. Ulrich, S., Sasiadek, J., Barkana, I.: Modeling and direct adaptive control of a flexible-joint manipulator. J. Guid. Control. Dynam. 35(1), 25–39 (2012)

    Article  Google Scholar 

  19. Parlaktuna, O., Ozkan, M.: Adaptive control of free-floating space manipulators using dynamically equivalent manipulator model. Robot. Auton. Syst. 46(3), 185–193 (2004)

    Article  Google Scholar 

  20. Pazelli, T.F.P.A.T., Terra, M.H., Siqueira, A.A.G.: Experimental investigation on adaptive robust controller designs applied to a free-floating space manipulator. Control. Eng. Pract. 19, 395–408 (2011)

    Article  Google Scholar 

  21. Chu, Z., Cui, J., Sun, F.: Fuzzy adaptive disturbance-observer-based robust tracking control of electrically driven free-floating space manipulator. IEEE Syst. J. 8(2), 343–352 (2014)

    Article  Google Scholar 

  22. Wang, H., Xie, Y.: On the recursive adaptive control for free-floating space manipulators. J. Intell. Robot. Syst. 66(4), 443–461 (2012)

    Article  Google Scholar 

  23. Zhang, F., Fu, Y., Qu, J., Wang, S.: Robust adaptive control of a free-floating space robot system in Cartesian space. Int. J. Adv. Robot. Syst. 12 (2015)

  24. Yu, X.Y., Chen, L.: Modeling and observer-based augmented adaptive control of flexible-joint free-floating space manipulators. Acta Astronaut. 108, 146–155 (2015)

    Article  Google Scholar 

  25. Aghili, F.: Coordination control of a free-flying manipulator and its base attitude to capture and detumble a noncooperative satellite. In: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis (2009)

  26. Barcinski, T., Lisowski, J., Rybus, T., Seweryn, K.: Controlled zero dynamics feedback linearization with application to free-floating redundant orbital manipulator. In: Proceedings of the 2013 IEEE American Control Conference, Washington (2013)

  27. Jarzebowska, E., Pietrak, K.: Constrained mechanical systems modeling and control: A free-floating space manipulator case as a multi-constrained system. Robot. Auton. Syst. 62(10), 1353–1360 (2014)

    Article  Google Scholar 

  28. Flores-Abad, A., Ma, O., Pham, K., Ulrich, S.: A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 68, 1–26 (2014)

    Article  Google Scholar 

  29. Papadopoulos, E.: Nonholonomic behavior in free-floating space manipulators and its utilization. In: Li, Z., Canny, J.F (eds.) Motion Planning, pp 423–445. Kluwer, Boston (1993)

  30. Papadopoulos, E., Tortopidis, I., Nanos, K.: Smooth planning for free-floating space robots using polynomials. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA’2005), Barcelona (2005)

  31. Rybus, T., Seweryn, K.: Application of rapidly-exploring random trees (RRT) algorithm for trajectory planning of free-floating space manipulator. In: Proceedings of the 10th International Workshop on Robot Motion and Control (RoMoCo’2015), Poznań (2015)

  32. Rybus, T., Barcinski, T., Lisowski, J., Seweryn, K., Nicolau-Kukliński, J., et al.: Experimental demonstration of singularity avoidance with trajectories based on the Bézier curves for free-floating manipulator. In: Proceedings of the 9th International Workshop on Robot Motion and Control (RoMoCo’2013), Wąsowo (2013)

  33. Nanos, K., Papadopoulos, E.: Avoiding dynamic singularities in Cartesian motions of free-floating manipulators. IEEE Trans. Aerosp. Electron. Syst. 51(3), 2305–2318 (2015)

    Article  Google Scholar 

  34. Chen, G., Zhang, L., Jia, Q., Chu, M., Sun, H.: Repetitive motion planning of free-floating space manipulators. Int. J. Adv. Robot. Syst. 10 (2013)

  35. Aghili, F.: Optimal control for robotic capturing and passivation of a tumbling satellite with unknown dynamics. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit (AIAA-GNC’2008), Honolulu (2008)

  36. Flores-Abad, A., Wei, Z., Ma, O., Pham, K.: Optimal control of space robots for capturing a tumbling object with uncertainties. J. Guid. Control. Dynam. 37(6), 2014–2017 (2014)

    Article  Google Scholar 

  37. Wang, M., Luo, J., Walter, U.: Trajectory planning of free-floating space robot using particle swarm optimization (PSO). Acta Astronaut. 112, 77–88 (2015)

    Article  Google Scholar 

  38. Rybus, T., Seweryn, K., Sasiadek, J.Z.: Trajectory optimization of space manipulator with non-zero angular momentum during orbital capture maneuver. In: Proceedeings of the AIAA Guidance, Navigation, and Control Conference (AIAA-GNC’2016), San Diego (2016)

  39. Rybus, T., Seweryn, K., Sasiadek, J.Z.: Nonlinear model predictive control (NMPC) for free-floating space manipulator. In: Sasiadek, J.Z. (ed.) Aerospace Robotics III, GeoPlanet: Earth and Planetary Sciences. (in press). Springer-Verlag (2016)

  40. Lindberg, R.E., Longman, R.W., Zedd, M.F.: Kinematic and dynamic properties of an elbow manipulator mounted on a satellite. In: Space Robotics: Dynamics and Control. Springer, USA (1993)

  41. Nanos, K., Papadopoulos, E.: On the use of free-floating space robots in the presence of angular momentum. Intel. Serv. Robot. 4(1), 3–15 (2011)

    Article  Google Scholar 

  42. Junkins, J.L., Schaub, H.: An instantaneous eigenstructure quasivelocity formulation for nonlinear multibody dynamics. J. Astronaut. Sci. 45(3), 279–295 (1997)

    Article  MathSciNet  Google Scholar 

  43. Yazdkhasti, S., Ulrich, S., Sasiadek, J.Z.: Laboratory experimentation of stereo vision-based relative navigation with unknown spinning spacecraft. In: Proceedings of the 20th International Conference on Methods and Models in Automation and Control (MMAR’2015), Miedzyzdroje (2015)

  44. Kelsey, J.M., Byrne, J., Cosgrove, M., Seereeram, S., Mehra, R.K.: Vision-based relative pose estimation for autonomous rendezvous and docking. In: Proceedings of the 2006 IEEE Aerospace conference. Big Sky, USA (2006)

  45. Dimitrov, D., Yoshida, K.: Utilization of holonomic distribution control for reactionless path planning. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing (2006)

  46. Kaigom, E.G., Jung, T.J., Roßmann, J.: Constrained PSO based optimal motion planning of a space robot with base disturbance minimization. In: Proceedings of the 11th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA’2011), ESTEC, Noordwijk (2011)

  47. Shah, S.V., Gattupalli, A., Misra, A.K.: Energy optimum reactionless path planning for capture of tumbling orbiting objects using a dual-arm robot. In: Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM’2013). IIT Roorkee, India (2013)

  48. Rybus, T., Seweryn, K.: Trajectory planning and simulations of the manipulator mounted on a free-floating satellite. In: Sasiadek, J.Z. (ed.) Aerospace Robotics, GeoPlanet: Earth and Planetary Sciences. Springer-Verlag (2013)

  49. Camacho, E.F., Bordons, C.: Model Predictive Control, 2nd edn. Springer-Verlag, London (2007)

    Book  Google Scholar 

  50. Kim, B., Necsulescu, D., Sasiadek, J.Z.: Autonomous mobile robot model predictive control. Int. J. Control 77(16), 1438–1445 (2004)

    Article  Google Scholar 

  51. Klančar, G., Škrjanc, I.: Tracking-error model-based predictive control for mobile robots in real time. Robot. Auton. Syst. 55(6), 460–469 (2007)

    Article  Google Scholar 

  52. Ozsoy, C., Kazan, R.: Cartesian base predictive control of robotic manipulators. In: Proceedings of the 1993 IEEE International Symposium on Industrial Electronics, Budapest (1993)

  53. Bhatia, V, Ganesh Ram, R. K, Kalaichelvi, V, Karthikeyan, R: Application of Model Predictive Controller for 2-DOF robot manipulator. In: Proceedings of the IEEE 10th International Symposium on Mechatronics and its Applications (ISMA), Sharjah, United Arab Emirates, Nagoya (2015)

  54. Becerra, V.M., Cook, S., Deng, J.: Predictive computed-torque control of a PUMA 560 manipulator robot. In: Proceedings of the 16th IFAC world congress, Prague (2005)

  55. Valle, F., Tadeo, F., Alvarez, T.: Predictive control of robotic manipulators. In: Proceedings of the 2002 IEEE International Conference on Control Applications, Glasgow (2002)

  56. Poignet, P., Gautier, M.: Nonlinear model predictive control of a robotic manipulator. In: Proceedings of the 6th International Workshop on Advanced Motion Control, Nagoya (2000)

  57. Torres, S., Méndez, J., Acosta, L., Sigut, M., Marichal, G.N., Moreno, L.: A predictive control algorithm with interpolation for a robot manipulator with constraints. In: Proceedings of the 2001 IEEE International Conference on Control Applications, Mexico (2001)

  58. Hazry, D., Sugisaka, M.: Predictive nonlinear control method for a mobile robot with nonholonomic constraints. In: Proceedings of the International Conference on Man Machine Systems, Langkawi (2006)

  59. McCourt, R., De Silva, C.W.: Autonomous robotic capture of a satellite using constrained predictive control. IEEE/ASME Trans. Mechatron. 11(6), 699–708 (2006)

    Article  Google Scholar 

  60. Houska, B., Ferreau, H.J., Diehl, M.: ACADO toolkit–An open-source framework for automatic control and dynamic optimization. Optim. Contr. Appl. Met. 32(3), 298–312 (2011)

    Article  MathSciNet  Google Scholar 

  61. Houska, B., Ferreau, H.J., Vukov, M., Quirynen, R.: ACADO Toolkit User’s Manual (2013)

  62. Nguyen-Huynh, T.C., Sharf, I.: Adaptive reactionless motion and parameter identification in postcapture of space debris. J. Guid. Control. Dyn. 36(2), 404–414 (2013)

    Article  Google Scholar 

  63. Wang, H., Xie, Y.: Prediction error based adaptive jacobian tracking for free-floating space manipulators. IEEE Trans. Aerosp. Electron. Syst. 48(4), 3207–3221 (2012)

    Article  Google Scholar 

  64. Boning, P., Dubowsky, S.: A kinematic approach to determining the optimal actuator sensor architecture for space robots. Int. J. Robot. Res. 30(9), 1194–1204 (2011)

    Article  Google Scholar 

  65. Rybus, T., Seweryn, K.: Manipulator trajectories during orbital servicing mission: numerical simulations and experiments on microgravity simulator. In: Proceedings of the 6th European Conference for Aeronautics and Space Sciences (EUCASS’2015), Kraków (2015)

  66. Rybus, T., Barcinski, T., Lisowski, J., Seweryn, K.: Analyses of a free-floating manipulator control scheme based on the fixed-base Jacobian with spacecraft velocity feedback. In: Sasiadek, J.Z. (ed.) Aerospace Robotics II, GeoPlanet: Earth and Planetary Sciences, pp 59–69. Springer-Verlag (2015)

  67. Ulrich, S., Sasiadek, J.: Modified simple adaptive control for a two-link space robot. In: Proceedings of the 2010 IEEE American Control Conference, Baltimore (2010)

  68. Rybus, T., Lisowski, J., Seweryn, K., Barcinski, T.: Numerical simulations and analytical analysis of the orbital capture maneouvre as a part of the manipulator-equipped servicing satellite design. In: Proceedings of the 17th International Conference on Methods and Models in Automation and Control (MMAR’2012), Miedzyzdroje (2012)

  69. Ulrich, S., Sasiadek, J.Z.: Direct model reference adaptive control of a flexible joint robot. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit (AIAA-GNC’2010), Toronto (2010)

  70. Herman, P., Kozłowski, K.: A survey of equations of motion in terms of inertial quasi-velocities for serial manipulators. Arch. Appl. Mech. 76(9–10), 579–614 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Rybus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybus, T., Seweryn, K. & Sasiadek, J.Z. Control System for Free-Floating Space Manipulator Based on Nonlinear Model Predictive Control (NMPC). J Intell Robot Syst 85, 491–509 (2017). https://doi.org/10.1007/s10846-016-0396-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0396-2

Keywords

Navigation